

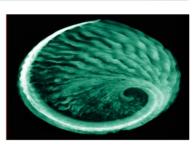
Hong Kong Offshore LNG Terminal Project

Water Quality Monitoring Report for First Year of Operation of the LNG Terminal – October to December 2023

PREPARED FOR

DATE 17 January 2024

PROJECT NO. 0505354



DOCUMENT DETAILS

DOCUMENT TITLE	Hong Kong Offshore LNG Terminal Project
DOCUMENT SUBTITLE	Water Quality Monitoring Report for First Year of Operation of the LNG Terminal – October to December 2023
PROJECT NUMBER	0505354
Date	17 January 2024
Version	0
Author	BW
Client name	CAPCO, HK Electric, HKLTL

DOCUMENT HISTORY

			ERM APPRO	OVAL TO ISSUE		
	REVISION	AUTHOR	REVIEWED BY	NAME	DATE	
	0	BW	RC	JN	17/1/2024	

ERM CLIENT: CAPCO, HK Electric, HKLTL
PROJECT NO: 0505354 DATE: 17 January 2024 VERSION: 0

SIGNATURE PAGE

Hong Kong Offshore LNG Terminal Project

Water Quality Monitoring Report for First Year of Operation of the LNG Terminal – October to December 2023

Dr Jasmine Ng

Managing Partner

ERM-Hong Kong, Limited 2509, 25/F One Harbourfront 18 Tak Fung Street Hunghom

Kowloon

Hong Kong

© Copyright 2024 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

CLIENT: CAPCO, HK Electric, HKLTL
PROJECT NO: 0505354 DATE: 17 January 2024 VERSION: 0

Hong Kong Offshore LNG Terminal Environmental Certification Sheet FEP-01/558/2018/A, FEP-02/558/2018/A and FEP-03/558/2018/B

Reference Document/Plan

Document/Plan to be Certified/ Verified: Water Quality Monitoring Report for First Year of

Operation of the LNG Terminal - October to December

2023

Date of Report: 17 January 2024

Date prepared by ET: 17 January 2024

Date received by IEC: 17 January 2024

Reference EP Requirement

EP Condition: Condition No. 5.1 of FEP-01/558/2018/A, FEP-

02/558/2018/A & FEP-03/558/2018/B

The Permit Holder shall implement the EM&A programme in accordance with the procedures and requirements as set out in the Updated EM&A Manual.

ET Certification

I hereby certify that the above referenced document/ $\frac{plan}{plan}$ complies with the above referenced condition of FEP-01/558/2018/A, FEP-02/558/2018/A & FEP-03/558/2018/B.

Mr Raymond Chow,

Environmental Team Leader:

Date:

17 January 2024

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of FEP-01/558/2018/A, FEP-02/558/2018/A & FEP-03/558/2018/B.

Kydin Chle

Ms Lydia Chak,

Date:

17 January 2024

Independent Environmental Checker:

CONTENTS

EXE	CUTIVE	SUMMARY	1
1.	INTRO	DUCTION	2
1.1	BACKGR	ROUND	2
1.2	STRUCT	URE OF THE REPORT	2
2.	OPERAT	TIONAL PHASE WATER QUALITY MONITORING	4
2.1	MONITO	RING LOCATIONS	4
2.2	MONITO	RING METHODOLOGY	4
	2.2.1 2.2.2 2.2.3 2.2.4	Monitoring Parameters and Frequency Monitoring Equipment Operational/ Analytical Procedures Action and Limit Levels for Marine Water Quality Monitoring	4 5 6 6
2.3 (QA/QC RE	QUIREMENTS	10
	2.3.1 2.3.2 2.3.3 2.3.4	Caliberation of In-situ Instruments Decontamination Procedures Sampling Management and Supervision Quality Control Measures for Sample Testing	10 10 10 10
2.4	OPERAT:	ON PHASE WATER QUALITY MONITORING RESULTS	10
2.5	SUMMAI	RY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT	11
2.6		RY OF ENVIRONMENTAL COMPLAINTS, NOTIFICATION OF SUMMONS AND SFUL PROSECUTION	11
3.	CONCU	LSION	12
ANN	EX A	CALIBRATION CERTIFICATES	
ANN	EX B	MONITORING SCHEDULE	
ANN	EX C	OPERATION PHASE WATER QUALITY MONITORING RESULTS	
ANN	EX D	GRAPHICAL PRESENTATION OF OPERATION PHASE WATER QUALITY MONITORING RESULTS	

LIST OF TABLES		
TABLE 2.1	LOCATION OF WATER QUALITY MONITORING STATIONS	4
TABLE 2.2	WATER QAULITY MONITORING PARAMETERS AND FREQUENCY	5
TABLE 2.3	WATER QAULITY MONITORING EQUIPMENT	6
TABLE 2.4	ACTION AND LIMIT LEVELS FOR OPERATION PHASE WATER QUALITY MONITORING	7
TABLE 2.5	EVENT AND ACTION PLAN FOR OPERATION PHASE WATER QUALITY MONITORING	8

LIST OF FIGURES

FIGURE 1.1 INDICATIVE LOCATION OF KEY PROJECT COMPONENTS

FIGURE 2.1 WATER QUALITY MONITORING LOCATIONS

CLIENT: CAPCO, HK Electric, HKLTL
PROJECT NO: 0505354 DATE: 17 January 2024 VERSION: 0 Page ii

EXECUTIVE SUMMARY

To support the increased use of natural gas in Hong Kong from 2020 onwards, Castle Peak Power Company Limited (CAPCO) and The Hongkong Electric Co., Ltd. (HK Electric) have identified that the development of an offshore liquefied natural gas (LNG) receiving terminal in Hong Kong using Floating Storage and Regasification Unit (FSRU) technology ('the Project') presents a viable additional gas supply option that will provide energy security through access to competitive gas supplies from world markets. The Project involves the construction and operation of an offshore LNG import facility to be located in the southern waters of Hong Kong, a double berth jetty, and subsea pipelines that connect to the gas receiving stations (GRS) at the Black Point Power Station (BPPS) and the Lamma Power Station (LPS). The Project commenced operation on 3 July 2023. In accordance with the Updated EM&A Manual of the Project, operation phase water quality monitoring is undertaken during the first year of operation for the Project. This is the water quality monitoring report presenting the operation phase water quality monitoring carried out between October and December 2023.

During the reporting period, operation phase water quality monitoring was conducted at three monitoring locations once per week for 13 sessions between 3 October and 28 December 2023. There were no Project-related Action and Limit Level exceedances for the operation phase water quality monitoring in the reporting period. Overall, deterioration of water quality and indirect impacts at water and ecological sensitive receivers were not detected. The operation of the Project did not result in unacceptable water quality impacts to the nearby water and ecological sensitive receivers, which aligns with the EIA study predictions.

There were no environmental complaints, notification of summons and successful prosecutions recorded for the operation of the Project in the reporting period.

The monitoring activities conducted in the reporting period have been reviewed and are considered effective. As such, no change to the monitoring methodology is recommended. Based on the EM&A findings for the reporting period, the environmental performance for the operation of the Project is generally in line with the EIA predictions and considered acceptable.

1. INTRODUCTION

1.1 BACKGROUND

To support the increased use of natural gas in Hong Kong from 2020 onwards, Castle Peak Power Company Limited (CAPCO) and The Hongkong Electric Co., Ltd. (HK Electric) have identified that the development of an offshore liquefied natural gas (LNG) receiving terminal in Hong Kong using Floating Storage and Regasification Unit (FSRU) technology ('the Project') presents a viable additional gas supply option that will provide energy security through access to competitive gas supplies from world markets. The Project involves the construction and operation of an offshore LNG import facility to be located in the southern waters of Hong Kong, a double berth jetty, and subsea pipelines that connect to the gas receiving stations (GRS) at the Black Point Power Station (BPPS) and the Lamma Power Station (LPS).

The Environmental Impact Assessment (EIA) Report for the Project was submitted to the Environmental Protection Department (EPD) of the HKSAR Government in May 2018. The EIA Report (EIAO Register No. AEIAR-218/2018) was approved by EPD and the associated Environmental Permit (EP) (EP-558/2018) was issued in October 2018.

An application for Further Environmental Permits (FEPs) were made on 24 December 2019 to demarcate the works between the different parties. The following FEPs were issued on 17 January 2020 and the EP under EP-558/2018 was surrendered on 5 March 2020.

- the double berth jetty at LNG Terminal under the Hong Kong LNG Terminal Limited (HKLTL), joint venture between CAPCO and HK Electric (FEP-01/558/2018/A) (1) construction commenced on 27 November 2020;
- the subsea gas pipeline for the BPPS and the associated GRS in the BPPS under CAPCO (FEP-03/558/2018/B) (2) construction commenced on 23 September 2020; and
- the subsea gas pipeline for the LPS and the associated GRS in the LPS under HK Electric (FEP-02/558/2018/A) (3) construction commenced on 13 December 2020.

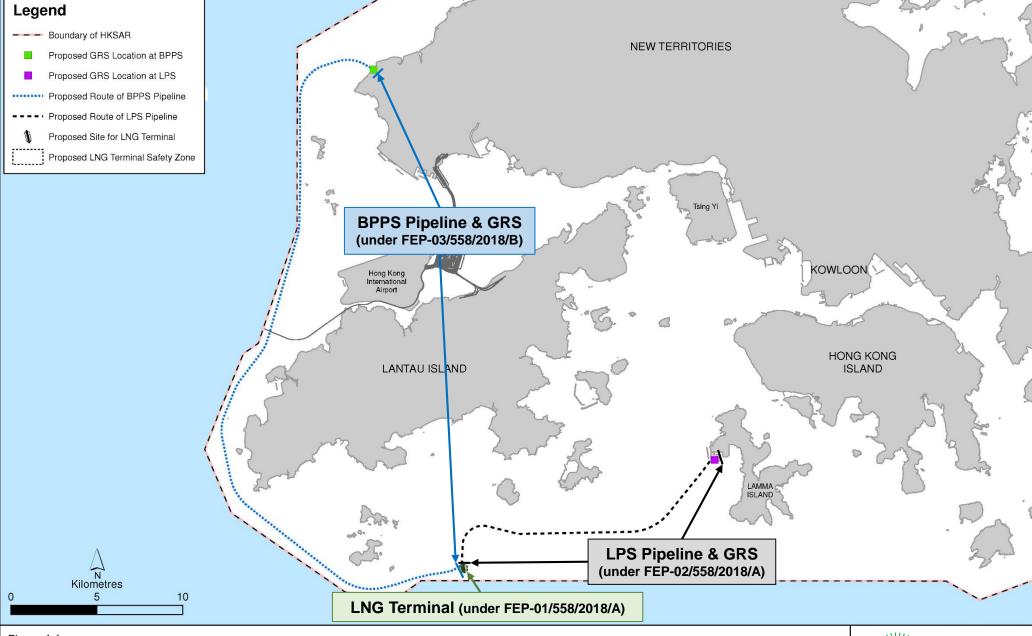
The location of these components is shown in *Figure 1.1*.

The Project commenced operation on 3 July 2023. This is the quarterly report for the operation phase water quality monitoring for the LNG Terminal which summarises the key monitoring results for the reporting period of October to December 2023 in accordance with the *Updated EM&A Manual* of the Project.

1.2 STRUCTURE OF THE REPORT

The remainder of the report is structured as follows:

⁽³⁾ Application for variation of an environmental permit for FEP-02/558/2018 was undertaken and the latest FEP (FEP-02/558/2018/A) was issued on 22 December 2020.



⁽¹⁾ Application for variation of an environmental permit for FEP-01/558/2018 was undertaken and the latest FEP (FEP-01/558/2018/A) was issued on 6 November 2020.

⁽²⁾ Application for variation of an environmental permit for FEP-03/558/2018/A was undertaken and the latest FEP (FEP-03/558/2018/B) was issued on 25 August 2021.

- Section 2 details the monitoring locations, monitoring methodology, QA/QC requirements, and the monitoring results;
- Section 3 provides the conclusion of this operation phase water quality monitoring.

CLIENT: CAPCO, HK Electric, HKLTL
PROJECT NO: 0505354 DATE: 17 January 2024 VERSION: 0 Page 3

2. OPERATIONAL PHASE WATER QUALITY MONITORING

In accordance with the Updated EM&A Manual of the Project, operation phase water quality monitoring would be conducted once a week for one year after operation of the LNG Terminal. Details of the operation phase water quality monitoring under this Project are presented in the following sections.

2.1 MONITORING LOCATIONS

Operation phase water quality monitoring was conducted at 3 monitoring stations around the LNG Terminal, comprising 1 sensitive receiver station, 1 ebb-tide control station and 1 floodtide control station. The locations of the monitoring stations are presented in *Figure 2.1*. The coordinates and description of monitoring stations are summarised in Table 2.1.

TABLE 2.1 LOCATION OF WATER QUALITY MONITORING STATIONS

Station	Easting	Northing	Description
IM6	814073	802029	Boundary of South Lantau Marine Park
E2	813367	808213	Control Station for Ebb Tide
F3	815032	801161	Control Station for Flood Tide

2.2 MONITORING METHODOLOGY

2.2.1 MONITORING PARAMETERS AND FREQUENCY

The parameters that have been selected for measurement in situ and in the laboratory are those that were either determined in the EIA to be those with the highest potential to be affected by the Project or are a standard check on water quality conditions. **Table 2.2** summarises the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The measurement of monitoring parameters followed the standard methods and detection limit requirements as stated in Table 5.2 of the Updated EM&A Manual.

CLIENT: CAPCO, HK Electric, HKLTL

TABLE 2.2 WATER QAULITY MONITORING PARAMETERS AND FREQUENCY

Monitoring Station	Parameters	Depth	Frequency and Replication
Sensitive Receiver Station IM6 Control Stations Ebb tide - E2 Flood tide - F3	 Dissolved Oxygen (DO) (mg/L) Dissolved Oxygen Saturation (DOS) (%) Temperature (°C) pH Turbidity (NTU) Salinity (ppt) Water depth (m) Total Residual Chlorine (TRC) (mg/L) Suspended Solid (SS) (mg/L) Total Inorganic Nitrogen (TIN) (mg/L) 5-day Biochemical Oxygen Demand (BOD₅) (mg/L) 	 Three water depths: 1 m below sea surface, middepth and 1 m above seabed. If the water depth is less than 3 m, middepth sampling only. If water depth less than 6 m, middepth would be omitted. 	 First year of operation water quality monitoring: one day per week, at mid-flood and mid-ebb tides, for one year upon the commencement of operation of the LNG Terminal. The interval between two sets of monitoring shall not be less than 36 hours. Two replicates of in-situ measurements and water samples at each depth at each station.

In addition to the water quality parameters, other relevant data were also measured and recorded in Water Quality Monitoring Logs, including the location of the monitoring stations, water depth, time, weather conditions, sea conditions, tidal state, current direction and velocity, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

2.2.2 MONITORING EQUIPMENT

Table 2.3 summarises the equipment used in the monitoring works. All the monitoring equipment complied with the requirements as set out in the Updated EM&A Manual.

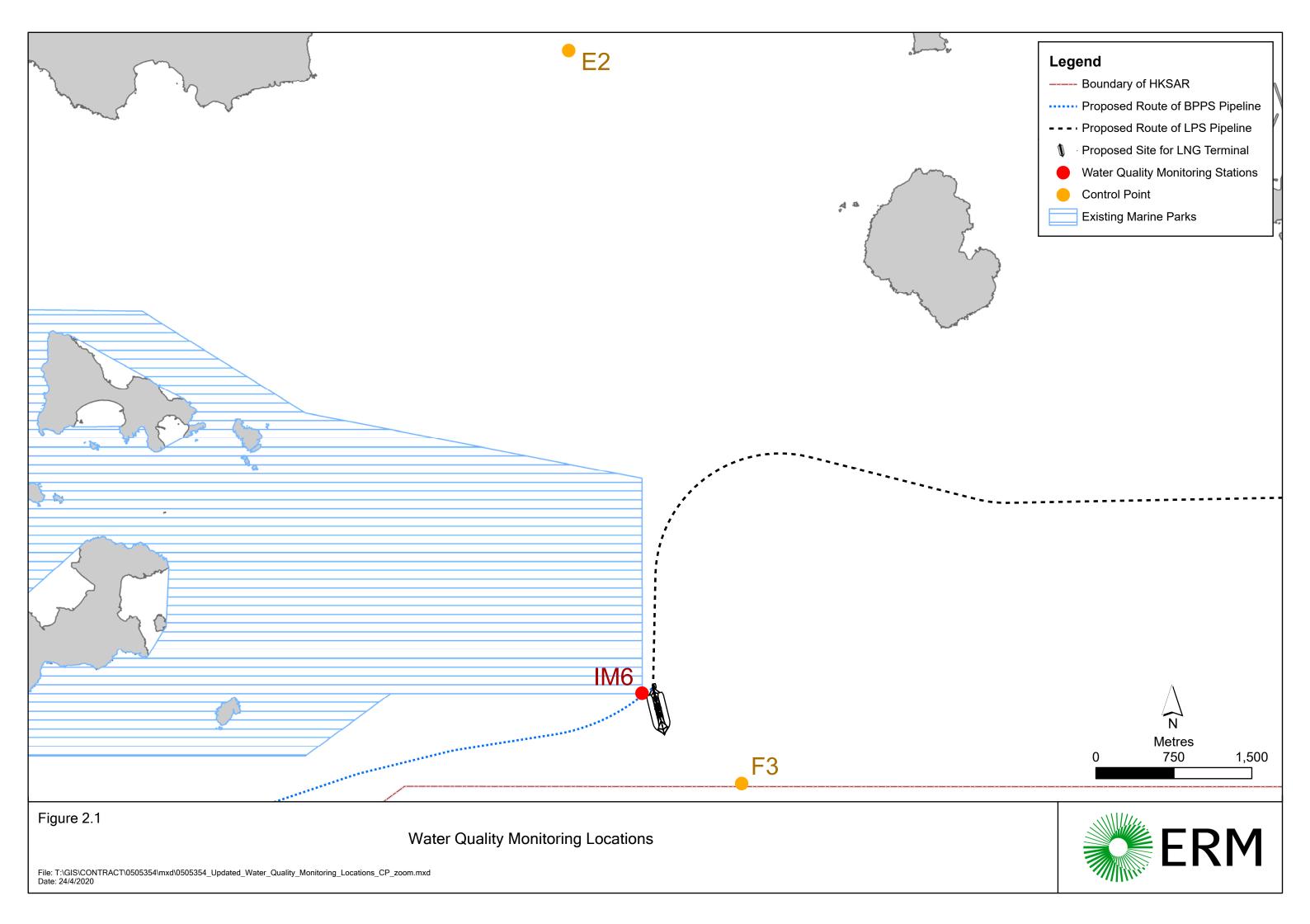
TABLE 2.3 WATER QAULITY MONITORING EQUIPMENT

Equipment	Brand and Model
Water Sampling Equipment	SBE 32 Carousel Water Sampler
Positioning Device	Hemisphere Vector V500
Water Depth Gauge	Knudsen 320M Single Beam Echo Sounder
Equipment for Dissolved Oxygen, Temperature, Turbidity, pH and Salinity measurements	YSI 6820, S/N: MPP16, MPP22 YSI 6920, S/N: MPP30 (Note 1)
Total Residual Chlorine	Hanna Instruments (Model HI761)
Equipment for Current Velocity and Direction measurements	Teledyne RDI Workhorse Sentinel ADCP

MPP22 was deployed for the monitoring conducted on 3 October 2023;

MPP30 was deployed for the monitoring conducted between 12 October and 23 November 2023; MPP16 was deployed for the monitoring conducted between 29 November and 28 December 2023;

2.2.3 OPERATIONAL/ ANALYTICAL PROCEDURES


At each monitoring station, two consecutive measurements of DO level, DO Saturation, Temperature, Turbidity, Salinity and pH were taken at each sampling depth. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded, and further readings were taken. Two water samples were collected for laboratory analysis of SS, TIN and BOD₅. Following sample collection, water samples were stored in high density polythene bottles (1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and transfer to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works started within 24 hours after collection of the water samples.

The testing of SS, TIN and BOD₅ for all monitoring stations was conducted by a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory, ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results.

2.2.4 ACTION AND LIMIT LEVELS FOR MARINE WATER QUALITY MONITORING

The Action and Limit Levels for operation phase water quality monitoring have been established with reference to Table 5.5 of the Updated EM&A Manual. Action and Limit Levels of key assessment parameters for operation phase marine water quality monitoring are summarised in **Table 2.4** which have been agreed with EPD.

TABLE 2.4 ACTION AND LIMIT LEVELS FOR OPERATION PHASE WATER QUALITY MONITORING

Parameters	Action Level	Limit Level			
First-year Operation	First-year Operation Phase Water Quality Monitoring				
DO in mg L ^{-1 a}	Surface and Middle 4.0 mg L ⁻¹	Surface and Middle 3.0 mg L ⁻¹			
	Bottom 2.2 mg L ⁻¹	Bottom 1.5 mg L ⁻¹			
Water Temperature in °C (Depth-averaged ^b) ^c	± 1.5 °C of baseline data, and ± 1.5 °C of the relevant control station's water temperature at the same tide of the same day	± 2.0 °C of baseline data, and ± 2.0 °C of the relevant control station's water temperature at the same tide of the same day			
Turbidity in NTU (Depth-averaged ^b) ^c	18.3 NTU, and 120% of the relevant control station's turbidity at the same tide of the same day	30.8 NTU, and 130% of the relevant control station's turbidity at the same tide of the same day			
SS in mg L ⁻¹ (Depth-averaged ^b) ^c	17.5 mg L ⁻¹ , and 120% of the relevant control station's SS at the same tide of the same day	29.5 mg L ⁻¹ , and 130% of the relevant control station's SS at the same tide of the same day			
TIN in mg L ⁻¹ (Depth-averaged ^b) ^c	0.5 mg L ⁻¹ , and 120% of the relevant control station's TIN at the same tide of the same day	0.8 mg L ⁻¹ , and 130% of the relevant control station's TIN at the same tide of the same day			
BOD ₅ in mg L ⁻¹ (Depth-averaged ^b) ^c	1.9 mg L ⁻¹ , and 120% of the relevant control station's BOD5 at the same tide of the same day	2.8 mg L ⁻¹ , and 130% of the relevant control station's BOD5 at the same tide of the same day			
TRC in mg L ⁻¹ (Depth-averaged ^b) ^c	0.02 mg L ⁻¹	0.02 mg L ⁻¹			

Notes

- a. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- b. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- c. For water temperature, salinity, SS, turbidity, BOD_5 , TIN and TRC, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

The Event and Action Plan for operation phase water quality monitoring is provided in *Table* **2.5**.

TABLE 2.5 EVENT AND ACTION PLAN FOR OPERATION PHASE WATER QUALITY MONITORING

Event	Action			
	ET	IEC	Contractor(s)	Project Proponents
Action Level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and Project Proponents. 	Check monitoring data submitted by ET and Contractor(s)'s working methods.	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice. 	Confirm receipt of notification of exceedance in writing.
Action Level being exceeded by two or more consecutive sampling days	 Repeat in-situ measurement to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and Project Proponents; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented. 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Discuss with ET and Contractor(s) on additional mitigation measures and advise Project Proponents accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Consider changes of working methods; Discuss with ET and IEC on additional mitigation measures and propose them to Project Proponents within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented; Ensure additional mitigation measures are properly implemented.

CLIENT: CAPCO, HK Electric, HKLTL

JECT NO: 0505354 DATE: 17 January 2024 VERSION: 0

Event	Action			
	ET	IEC	Contractor(s)	Project Proponents
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s), Project Proponents and EPD; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented. 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Discuss with ET and Contractor(s) on additional mitigation measures and advise Project Proponents accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to Project Proponents within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented; Ensure additional mitigation measures are properly implemented; Request Contractor(s) to critically review the working methods.
Limit Level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s), Project Proponents and EPD; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented. 	1. Check monitoring data submitted by ET and Contractor(s)'s working methods; 2. Discuss with ET and Contractor(s) on additional mitigation measures and advise Project Proponents accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to Project Proponents within 3 working days; Implement the agreed mitigation measures; As directed by Project Proponents, slow down or stop all or part of the marine construction works until no exceedance of Limit Level. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented; Ensure additional mitigation measures are properly implemented; Request Contractor(s) to critically review the working methods; Consider and instruct, if necessary, the Contractor(s) to slow down or to stop all or part of the marine construction works until no exceedance of Limit Level.

CLIENT: CAPCO, HK Electric, HKLTL
PROJECT NO: 0505354 DATE: 17 January 2024 VERSION: 0
Page 9

2.3 QA/QC REQUIREMENTS

2.3.1 CALIBERATION OF IN-SITU INSTRUMENTS

In situ monitoring equipment for the measurement of DO, Temperature, Turbidity, pH and Salinity was checked, calibrated and certified by a laboratory accredited under HOKLAS before use, while the test kit for TRC was checked against the calibration check set provided by the manufacturer before commencement of monitoring. Copies of the calibration certificates for the measuring equipment for DO, Temperature, Turbidity, pH and Salinity are attached in **Annex A**. The *in situ* monitoring equipment for the measurement of DO, Temperature, Turbidity, pH and Salinity was subsequently re-calibrated every three months throughout the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibrations for dissolved oxygen meter were carried out before commencement of monitoring and after completion of all measurements each day.

On-site calibration of field equipment followed the "Guide to On-Site Test Methods for the Analysis of Waters", BS 1427: 2009. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available to ensure monitoring could proceed uninterrupted even when equipment is under maintenance, calibration etc.

2.3.2 DECONTAMINATION PROCEDURES

Water sampling equipment used during the course of the monitoring was decontaminated by manual washing and rinsed with clean seawater/distilled water after each sampling event. All disposable equipment was discarded after sampling.

2.3.3 SAMPLING MANAGEMENT AND SUPERVISION

All sampling bottles were labelled with the sample ID (including the indication of sampling station and tidal stage e.g. IM6_ME_S_R1), laboratory number and sampling date. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

2.3.4 QUALITY CONTROL MEASURES FOR SAMPLE TESTING

The sample testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory for every batch of 20 samples:

- One method blank; and
- One set of quality control (QC) samples (including method QC and sample duplicate).

2.4 OPERATION PHASE WATER QUALITY MONITORING RESULTS

Operation phase water quality monitoring was conducted at three monitoring locations once per week for 13 sessions between 3 October and 28 December 2023. The detailed monitoring schedule is shown in **Annex B**. The monitoring results with weather and sea conditions at each monitoring day are shown in **Annex C**. Graphical presentation of water quality monitoring results is given in **Annex D**. During the monitoring sessions, the major activity on site was the operation of the LNG Terminal and no observable pollution source was recorded at

the monitoring stations. No other external factors (e.g. surface runoff from nearby landmass, adverse weather) were identified that might affect water quality at the monitoring stations during the monitoring period.

Overall, deterioration of water quality and indirect impacts at water and ecological sensitive receivers were not detected. The operation of the Project did not result in unacceptable water quality impacts to the nearby water and ecological sensitive receivers, which aligns with the EIA study predictions.

2.5 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

There were no Project related Action and Limit Level exceedances for operation phase water quality monitoring in the reporting period.

2.6 SUMMARY OF ENVIRONMENTAL COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION

There were no environmental complaints, notification of summons and successful prosecutions recorded for the operation of the Project in the reporting period.

CONCULSION

This is the quarterly report for the operation phase water quality monitoring for the LNG Terminal which summarises the key monitoring results for the reporting period of October to December 2023 in accordance with the *Updated EM&A Manual* of the Project.

Operation phase water quality monitoring was conducted at three monitoring locations once per week for 13 sessions between 3 October and 28 December 2023. There were no Project related Action and Limit Level exceedances for operation phase water quality monitoring in the reporting period. Overall, deterioration of water quality and indirect impacts at water and ecological sensitive receivers were not detected. The operation of the Project did not result in unacceptable water quality impacts to the nearby water and ecological sensitive receivers, which aligns with the EIA study predictions.

There were no environmental complaints, notification of summons and successful prosecutions recorded for the operation of the Project in the reporting period.

The monitoring activities conducted in the reporting period have been reviewed and are considered effective. As such, no change to the monitoring methodology is recommended. Based on the EM&A findings for the reporting period, the environmental performance for the operation of the Project is generally in line with the EIA predictions and considered acceptable.

ANNEX A CALIBRATION CERTIFICATES

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: JOHNNY HO WORK ORDER: HK2329342

CLIENT: EGS (ASIA) LTD

ADDRESS: 15/F., NORTH POINT INDUSTRIAL BUILDING, SUB-BATCH:

499 KING'S ROAD, NORTH POINT, LABORATORY: HONG KONG

HONG KONG

DATE RECEIVED: 25-Jul-2023

DATE OF ISSUE: 26-Jul 2023

DATE OF ISSUE: 26-Jul-2023

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type: Multifunctional Meter Service Nature: Performance Check

Scope: Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.: [YSI]/ [6820-V2-M]
Serial No./ Equipment No.: [07H100241]/ [MPP22]

Date of Calibration: 25-July-2023

GENERAL COMMENTS

This report superseded any previous report(s) with same work order number.

16.3

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK2329342

SUB-BATCH: 0

DATE OF ISSUE: 26-Jul-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820-V2-M]

Serial No./ Equipment No.:

[07H100241]/[MPP22]

Date of Calibration:

25-July-2023

Date of Next Calibration: 25-October-2023

PARAMETERS:

Dissolved Oxygen

Method Ref: APHA (23rd edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.96	2.80	-0.16
5.49	5.43	-0.06
7.18	7.19	+0.01
	Tolerance Limit (mg/L)	±0.20

pH Value Method Ref: APHA (23rd edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.91	-0.09
7.0	6.99	-0.01
10.0	9.89	-0.11
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2329342

SUB-BATCH: 0

DATE OF ISSUE: 26-Jul-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820-V2-M]

25-July-2023

Serial No./

[07H100241]/[MPP22]

Equipment No.: Date of Calibration:

[0711100211]/[11111122

Date of Next Calibration: 25-October-2023

PARAMETERS:

Turbidity

Method Ref: APHA (23rd edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.3	+7.5
40	40.7	+1.8
80	81.4	+1.8
400	N/A	N/A
800	N/A	N/A
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (23rd edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.73	-2.7
20	19.46	-2.7
30	29.65	-1.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2329342

SUB-BATCH: 0

DATE OF ISSUE: 26-Jul-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820-V2-M]

Serial No./

Equipment No.:

[07H100241]/[MPP22]

Date of Calibration:

25-July-2023

Date of Next Calibration:

25-October-2023

PARAMETERS:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.9	12.01	+0.1
20.7	19.75	-0.9
39.5	38.79	-0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: DOMINIC LAI WORK ORDER: HK2340210

CLIENT: EGS (ASIA) LTD

ADDRESS: 15/F., NORTH POINT INDUSTRIAL BUILDING, **SUB-BATCH:** (

499 KING'S ROAD, NORTH POINT, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 10-Oct-2023 **DATE OF ISSUE:** 12-Oct-2023

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Multifunctional Meter Service Nature: Performance Check

Scope: Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.: [YSI]/ [6920-V2-M]
Serial No./ Equipment No.: [08C100240]/ [MPP30]
Date of Calibration: 10-October-2023

16:5

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK2340210

SUB-BATCH: 0

DATE OF ISSUE: 12-Oct-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6920-V2-M]

Serial No./ Equipment No.:

[08C100240]/[MPP30]

Date of Calibration:

10-October-2023

10-January-2024

PARAMETERS:

Dissolved Oxygen

Method Ref: APHA (23rd edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.06	3.09	+0.03
4.04	4.19	+0.15
7.26	7.18	-0.08
	Tolerance Limit (mg/L)	±0.20

Date of Next Calibration:

pH Value Method Ref: APHA (23rd edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.88	-0.12
7.0	7.01	+0.01
10.0	9.82	-0.18
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2340210

SUB-BATCH: 0

DATE OF ISSUE: 12-Oct-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6920-V2-M]

Serial No./ Equipment No.:

[08C100240]/[MPP30]

Date of Calibration:

10-October-2023

Date of Next Calibration:

10-January-2024

PARAMETERS:

Turbidity Method Ref: APHA (23rd edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.7	-7.5
40	43.3	+8.2
80	84.3	+5.4
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (23rd edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.55	-4.5
20	19.38	-3.1
30	28.78	-4.1
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2340210

SUB-BATCH: 0

DATE OF ISSUE: 12-Oct-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/

[YSI]/[6920-V2-M]

Model No.: Serial No./

Equipment No.:

[08C100240]/[MPP30]

Date of Calibration:

10-October-2023

Date of Next Calibration:

10-January-2024

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
14.5	14.20	-0.3
21.0	21.58	+0.6
40.5	40.27	-0.2
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong **T:** +852 2610 1044

F: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: LAM MEI SHING WORK ORDER: HK2346638

CLIENT: EGS (ASIA) LTD

ADDRESS: 15/F., NORTH POINT INDUSTRIAL BUILDING, **SUB-BATCH:** 0

499 KING'S ROAD, NORTH POINT, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 21-Nov-2023 **DATE OF ISSUE:** 22-Nov-2023

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Multifunctional Meter Service Nature: Performance Check

Scope: Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.: [YSI]/ [6820-C-M]

Serial No./ Equipment No.: [02J0058-AB]/ [MPP16]
Date of Calibration: 21-November-2023

16:5

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK2346638

SUB-BATCH: 0

DATE OF ISSUE: 22-Nov-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820-C-M]

Serial No./ Equipment No.:

[02J0058-AB]/[MPP16]

Date of Calibration:

21-November-2023

PARAMETERS:

Dissolved Oxygen

Method Ref: APHA (23rd edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.94	2.89	-0.05
5.20	5.23	+0.03
7.63	7.68	+0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (23rd edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.92	-0.08
7.0	6.94	-0.06
10.0	10.15	+0.15
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2346638

SUB-BATCH: 0

DATE OF ISSUE: 22-Nov-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820-C-M]

Serial No./ Equipment No.:

[02J0058-AB]/[MPP16]

Date of Calibration:

21-November-2023

PARAMETERS:

Turbidity

Method Ref: APHA (23rd edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.9	-2.5
40	38.7	-3.2
80	78.6	-1.8
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (23rd edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.56	-4.4
20	19.04	-4.8
30	28.46	-5.1
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER: HK2346638

SUB-BATCH: 0

DATE OF ISSUE: 22-Nov-2023 **CLIENT:** EGS (ASIA) LTD

Equipment Type:

Multifunctional Meter

Brand Name/

[YSI]/[6820-C-M]

Model No.: Serial No./

Equipment No.:

[02J0058-AB]/[MPP16]

Date of Calibration: 21-November-2023

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.5	11.45	-0.1
20.0	19.76	-0.2
40.0	40.02	+0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

ANNEX B

MONITORING SCHEDULE

Environmental Team Consultancy Services for the Hong Kong Offshore LNG Terminal Project Operation Phase Water Quality Monitoring (October 2023)

Sunday	Monday		-	Thursday		Saturday
1/Oct		3/Oct	4/Oct	5/Oct	6/Oct	7/Oct
		Operation Phase Water				
		Quality Monitoring				
		ebb tide 13:48 - 15:48				
		flood tide 8:05 - 10:05				
8/Oct	9/Oct	10/Oct	11/Oct		13/Oct	14/Oct
				Operation Phase Water		
				Quality Monitoring		
				ebb tide 10:09 - 12:09		
				flood tide 16:40 - 18:40		
15/Oct	16/Oct	17/Oct	18/Oct	19/Oct	20/Oct	21/Oct
13/000	10/001	177000	18/000	Operation Phase Water	20/001	21/000
				Quality Monitoring		
				ebb tide 13:56 - 15:56		
				flood tide 8:44 - 10:44		
22/Oct	23/Oct	24/Oct	25/Oct		27/Oct	28/Oct
				Operation Phase Water		
				Quality Monitoring		
				ebb tide 9:11 - 11:11		
				flood tide 15:56 - 17:56		
20/0 **	20/0-4	24/0 -				
29/Oct	30/Oct	31/Oct				

Environmental Team Consultancy Services for the Hong Kong Offshore LNG Terminal Project Operation Phase Water Quality Monitoring (November 2023)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Guilday	Monday	Tucsuay	1/Nov			4/Nov
			Operation Phase Water Quality Monitoring		9,1161	
			ebb tide 13:25 - 15:45 flood tide 8:11 - 10:11			
5/Nov	6/Nov	7/Nov	8/Nov	9/Nov	10/Nov	11/Nov
					Operation Phase Water Quality Monitoring ebb tide 9:28 - 11:28 flood tide 15:41 - 17:41	
12/Nov	13/Nov	14/Nov	15/Nov	16/Nov	17/Nov	18/Nov
				Operation Phase Water Quality Monitoring ebb tide 13:02 - 15:02 flood tide 7:56 - 9:56		
19/Nov	20/Nov	21/Nov	22/Nov	23/Nov	24/Nov	25/Nov
				Operation Phase Water Quality Monitoring ebb tide 7:49 - 9:49 flood tide 14:37 - 16:37		
26/Nov	27/Nov	28/Nov		30/Nov		
			Operation Phase Water Quality Monitoring ebb tide 12:25 - 14:25 flood tide 7:23 - 9:23			

Environmental Team Consultancy Services for the Hong Kong Offshore LNG Terminal Project Operation Phase Water Quality Monitoring (December 2023)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1/Dec 3/Dec 4/Dec 5/Dec 6/Dec 7/Dec 8/Dec Operation Phase Water Quality Monitoring	2/Dec 9/Dec
3/Dec 4/Dec 5/Dec 6/Dec 7/Dec 8/Dec Operation Phase Water Quality Monitoring	
Operation Phase Water Quality Monitoring	9/Dec
Operation Phase Water Quality Monitoring	9/Dec
Operation Phase Water Quality Monitoring	9/Dec
Operation Phase Water Quality Monitoring	9/Dec
Operation Phase Water Quality Monitoring	9/Dec
Operation Phase Water Quality Monitoring	9/Dec
Monitoring	
ebb tide 7:32 - 9:32	
flood tide 14:12 - 16:12	
10/Dec 11/Dec 12/Dec 13/Dec 14/Dec 15/Dec	16/Dec
Operation Phase Water	0,000
Quality Monitoring	
ebb tide 10:12 - 12:12	
flood tide 15:22 - 17:22	
17/Dec 18/Dec 19/Dec 20/Dec 21/Dec 22/Dec	23/Dec
Operation Phase Water	<u> </u>
Quality Monitoring	
ebb tide 15:57 - 17:57	
flood tide 10:36 - 12:36	
	00/5
24/Dec 25/Dec 26/Dec 27/Dec 28/Dec 29/Dec	30/Dec
Operation Phase Water	
Quality Monitoring	
ebb tide 11:53 - 13:53	
31/Dec Signature	

ANNEX C

OPERATION PHASE WATER QUALITY MONITORING RESULTS

Date: 2023/10/3

Tic	Monitorin	ng Weather	Sea	Sampling	Water Depth	Depth	Current	Current	Te	mperature (°	C)	Salinity	(ppt)	pl	Н	DO Satur	ation (%)	Dissolv	ved Oxygen	mg/L)	Tu	rbidity(NTU)		Total Res	idual Chlorin	e (mg/L)	Susper	nded Solids ((mg/L)	Total Inorga	anic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	mand (mg/L)
110	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.15 0.15	100	29.9 30.1	30.0		30.9 30.8	30.8	8.2 8.2	8.2	114.7 122.2	118.5	7.3 7.8	7.6	6.8	3.2 2.8	3.0		<0.001	<0.001		4.8	4.6		0.13 0.13	0.13		<1.0 <1.0	<1.0	
	E2	Fine	Calm	14:34	9.4	М	0.22 0.22	83 83	29.0 29.1	29.0	29.3	31.3 31.2	31.2	8.1 8.1	8.1	92.7 93.2	93.0	6.0	6.0	0.0	9.7 8.5	9.1	7.2	<0.001	<0.001	<0.001	11.8 11.5	11.7	9.6	0.14	0.14	0.13	<1.0 <1.0	<1.0	<1.0
Mid-E	,					В	0.40 0.17	92 59	28.9 28.9	28.9		31.5 31.4	31.4	8.1 8.1	8.1	92.3 90.6	91.5	6.0 5.9	5.9	5.9	9.4 9.7	9.6		<0.001 <0.001	<0.001		12.3 12.7	12.5		0.13 0.14	0.14		<1.0 <1.0	<1.0	
						s	0.11 0.17	268 122	29.0 29.2	29.1		31.9 31.4	31.7	8.1 8.1	8.1	100.8 101.3	101.1	6.5 6.5	6.5	6.4	3.1 2.9	3.0		<0.001 <0.001	<0.001		4.7	4.6		0.08	0.09		<1.0 <1.0	<1.0	
	IM6	Fine	Calm	14:03	17.0	М	0.20	297 297	28.9 28.9	28.9	28.9	32.7 32.7	32.7	8.1 8.1	8.1	98.8 99.0	98.9	6.4 6.4	6.4	0.4	4.3	4.3	4.2	<0.001 <0.001	<0.001	<0.001	6.4	6.3	6.0	<0.02 <0.02	<0.02	0.04	<1.0 <1.0	<1.0	<1.0
						В	0.16 0.16	288 288	28.8 28.8	28.8		32.8 32.8	32.8	8.1 8.1	8.1	97.9 97.4	97.7	6.3	6.3	6.3	5.3 5.3	5.3		<0.001 <0.001	<0.001		7.1 7.5	7.3		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
						S	0.74 0.74	258 258	29.0 29.0	29.0		31.1 31.1	31.1	8.1 8.1	8.1	101.7 102.0	101.9	6.6 6.6	6.6	6.6	3.8	3.9		<0.001 <0.001	<0.001		5.9 6.1	6.0		0.12 0.11	0.12		<1.0 <1.0	<1.0	
	F3	Cloudy	Moderate	8:23	18.0	М	0.31	217 237	28.9 28.9	28.9	28.9	32.8 32.8	32.8	8.1 8.1	8.1	102.4 102.6	102.5	6.6 6.6	6.6	0.0	1.8	1.8	4.0	<0.001 <0.001	<0.001	<0.001	7.5 7.1	7.3	8.6	0.03 <0.02	0.03	0.05	<1.0 <1.0	<1.0	<1.0
Mic						В	0.17 0.64	280 292	28.9 28.9	28.9		32.8 32.8	31.1	8.1 8.1	8.1	101.4 101.6	101.5	6.5 6.5	6.5	6.5	6.9 5.9	6.4		<0.001 <0.001	<0.001		12.1 12.6	12.4		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
Flo						S	0.34 0.34	309 309	28.8 28.8	28.8		31.6 31.6	31.6	8.1 8.1	8.1	98.6 98.4	98.5	6.4 6.4	6.4	6.4	1.6 1.5	1.6		<0.001 <0.001	<0.001		3.4	3.6		0.13 0.13	0.13		<1.0 <1.0	<1.0	
	IM6	Fine	Calm	8:08	16.5	М	0.09	197 197	28.9 28.9	28.9	28.9	32.4 32.4	32.4	8.1 8.1	8.1	100.2 100.2	100.2	6.5 6.5	6.5	0.4	2.2	2.0	3.5	<0.001 <0.001	<0.001	<0.001	4.4	4.3	5.8	0.06	0.06	0.07	<1.0 <1.0	<1.0	<1.0
						В	0.21	98 98	28.9 28.9	28.9		32.8 32.8	32.8	8.1 8.1	8.1	101.0 100.3	100.7	6.5 6.4	6.5	6.5	6.5 7.2	6.9		<0.001 <0.001	<0.001		9.6	9.4		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	

1

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/10/12

Tic	. Monitor	ing Weather	Sea	Sampling	Water Depth	Depth	Current	Current	T	emperature (°	C)	Salinity	(ppt)	pi	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	1	urbidity(NTU)	Total Res	idual Chlorin	e (mg/L)	Susper	nded Solids	(mg/L)	Total Inore	ganic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	amand (mg/L)
110	Statio	n Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						S	0.2	60 233	27.3 27.3	27.3		31.3 31.3	31.3	8.1 8.1	8.1	93.3 94.5	93.9	6.2	6.2	6.2	3.7 3.5	3.6		<0.001 <0.001	<0.001		4.9 4.8	4.9		0.07	0.07		<1.0 <1.0	<1.0	
	E2	Fine	Moderate	10:09	9.7	М	0.2	118 344	27.2 27.2	27.2	27.3	31.4 31.4	31.4	8.1	8.1	91.2 91.7	91.5	6.1	6.1	6.2	4.6	4.6	10.1	<0.001	<0.001	<0.001	4.2 5.0	4.6	11.1	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
Mid-E						В	0.5 0.5	342 342	27.3 27.3	27.3		31.6 31.6	31.6	8.0	8.0	90.2 89.4	89.8	6.0 5.9	6.0	6.0	22.1	22.0		<0.001	<0.001		30.9 16.5	23.7		0.06	0.06		<1.0 <1.0	<1.0	1
Wild-6	00					S	0.2	167 167	27.1 27.1	27.1		31.4 31.4	31.4	7.9 7.9	7.9	97.6 97.9	97.8	6.5 6.5	6.5	6.4	1.3	1.4		<0.001 <0.001	<0.001		3.6 1.9	2.8		0.05 0.04	0.05		<1.0 <1.0	<1.0	i
	IM6	Fine	Moderate	10:43	17.3	М	0.2	82 8	27.3 27.3	27.3	27.2	32.2 32.2	32.2	7.9 7.9	7.9	94.9 94.9	94.9	6.3 6.3	6.3	0.4	3.6 3.2	3.4	4.7	<0.001 <0.001	<0.001	<0.001	4.0 3.3	3.7	6.4	0.03	0.03	0.04	<1.0 <1.0	<1.0	<1.0
						В	0.2	352 343	27.3 27.3	27.3		32.3 32.3	32.3	7.9 7.9	7.9	95.5 94.8	95.2	6.3	6.3	6.3	9.3 9.2	9.3		<0.001 <0.001	<0.001		13.4 12.0	12.7		0.05 0.03	0.04		<1.0 <1.0	<1.0	1
						s	0.81 0.81	240 240	27.5 27.5	27.5		31.5 31.5	31.5	8.0 8.0	8.0	104.0 106.2	105.1	6.9 7.0	7.0	6.6	1.5	1.4		<0.001 <0.001	<0.001		3.4 2.7	3.1		0.03	0.03		<1.0 <1.0	<1.0	l
	F3	Cloudy	Rough	16:40	17.9	М	0.15 0.18	116 221	27.2 27.2	27.2	27.3	32.2 32.2	32.2	8.0 8.0	8.0	95.4 94.6	95.0	6.3 6.3	6.3	0.0	4.8 4.9	4.9	6.7	<0.001 <0.001	<0.001	<0.001	4.0 3.9	4.0	9.9	0.03	0.03	0.03	<1.0 <1.0	<1.0	<1.0
Mic						В	0.96 0.96	328 328	27.2 27.2	27.2		32.3 32.3	32.3	8.0 8.0	8.0	95.3 94.1	94.7	6.3	6.3	6.3	13.7	13.8		<0.001 <0.001	<0.001		25.1 20.1	22.6		0.04	0.04		<1.0 <1.0	<1.0	1
Flo	od					s	0.79 0.79	240 240	27.4 27.4	27.4		31.7 31.7	31.7	8.0 8.0	8.0	103.5 103.8	103.7	6.9 6.9	6.9	6.8	1.8	1.8		<0.001 <0.001	<0.001		2.6 2.7	2.7		0.03	0.03		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	16:55	16.7	М	0.20	213	27.4 27.4	27.4	27.3	31.8 31.8	31.8	7.9 7.9	7.9	100.2 101.5	100.9	6.6 6.7	6.5	2.0	2.8	2.7	7.4	<0.001 <0.001	<0.001	<0.001	5.4 4.0	4.7	8.1	0.03	0.03	0.03	<1.0 <1.0	<1.0	<1.0
						В	0.13	181 238	27.2 27.2	27.2		32.2 32.2	32.2	7.9 7.9	7.9	96.5 94.9	95.7	6.4	6.4	6.3	18.3	17.7		<0.001 <0.001	<0.001		16.0 17.6	16.8		0.03	0.04		<1.0 <1.0	<1.0	1

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/10/19

Tide	Monitor	oring Weathe		Sampling	Water Depth		Current	Current	Ten	nperature (°	C)	Salinit	(ppt)		ρH	DO Satu	ration (%)	Dissol	ved Oxygen	mg/L)	Turb	idity(NTU)		Total Res	idual Chlorin	e (mg/L)	Suspen	ded Solids	(mg/L)	Total Inorg	anic Nitroge	en (mg/L)	5-day Biocher	nical Oxygen De	emand (mg/L)
110	Statio	on Conditio	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value A	verage	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.75 0.75	79 79	26.6 26.6	26.6		31.7 31.7	31.7	8.0 8.0	8.0	91.8 91.8	91.8	6.2	6.2	6.2	11.0 11.0	11.0		<0.001	<0.001		18.1 17.5	17.8		0.11 0.12	0.12		<1.0 <1.0	<1.0	
	E2	2 Cloudy	Rough	14:31	9.0	М	0.42 0.24	179 292	26.5 26.5	26.5	26.5	31.7 31.7	31.7	8.0 8.0	8.0	92.5 91.8	92.2	6.2	6.2	0.2	11.6 11.5	11.6	11.7	<0.001	<0.001	<0.001	15.5 15.1	15.3	16.0	0.12 0.12	0.12	0.12	<1.0 <1.0	<1.0	<1.0
Mid-E	Nh.					В	0.08	280 208	26.5 26.5	26.5		31.7 31.7	31.7	8.0 8.0	8.0	95.4 93.4	94.4	6.4	6.3	6.3	12.6 12.6	12.6		<0.001	<0.001		15.0 14.9	15.0		0.12 0.11	0.12		<1.0 <1.0	<1.0	
Mid-L						S	0.46 0.36	263 347	26.5 26.5	26.5		32.3 32.3	32.3	7.9 7.9	7.9	94.5 94.5	94.5	6.3 6.3	6.3	6.3	7.2 7.1	7.2		<0.001 <0.001	<0.001		8.4 9.4	8.9		0.08	0.08		<1.0 <1.0	<1.0	
	IM6	6 Cloudy	Rough	14:00	17.6	М	0.41 0.41	278 229	26.5 26.5	26.5	26.5	32.3 32.3	32.3	7.9 7.9	7.9	94.1 94.3	94.2	6.3	6.3	0.0	7.7	7.6	10.2	<0.001 <0.001	<0.001	<0.001	10.0 9.6	9.8	14.9	0.06	0.06	0.07	<1.0 <1.0	<1.0	<1.0
						В	0.61 0.61	352 352	26.5 26.5	26.5		32.4 32.4	32.4	7.9 7.9	7.9	94.4 94.2	94.3	6.3 6.3	6.3	6.3	17.0 14.9	16.0		<0.001 <0.001	<0.001		20.1 31.8	26.0		0.06	0.06		<1.0 <1.0	<1.0	
						S	0.72 1.08	229 260	26.5 26.5	26.5		32.3 32.3	32.3	8.1 8.1	8.1	95.1 94.9	95.0	6.4 6.4	6.4	6.4	6.3	6.3		<0.001 0.009	0.005		8.2 8.0	8.1		0.06	0.06		<1.0 <1.0	<1.0	
	F3	Rainy	Rough	9:04	17.8	М	0.86 1.36	298 265	26.5 26.5	26.5	26.5	32.3 32.3	32.3	8.1 8.1	8.1	95.4 95.3	95.4	6.4 6.4	6.4	0.4	6.7	6.6	10.8	<0.001 <0.001	<0.001	0.002	6.8 7.6	7.2	16.8	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
Mid						В	1.23 1.23	246 246	26.4 26.4	26.4		32.6 32.6	32.6	8.1 8.1	8.1	95.8 95.5	95.7	6.4 6.4	6.4	6.4	19.9 18.8	19.4		<0.001 <0.001	<0.001		32.5 37.4	35.0		0.05	0.05		<1.0 <1.0	<1.0	
Floo	1					s	0.48 0.48	87 87	26.5 26.5	26.5		32.3 32.3	32.3	8.0 8.0	8.0	94.6 94.8	94.7	6.3 6.4	6.4	6.3	9.4	9.3		<0.001 <0.001	<0.001		9.6 10.1	9.9		0.06	0.06		<1.0 <1.0	<1.0	
	IM6	6 Rainy	Rough	8:47	16.2	М	0.40 0.40	254 254	26.5 26.5	26.5	26.5	32.3 32.3	32.3	8.0 8.0	8.0	94.3 94.5	94.4	6.3 6.3	6.3	0.0	8.9 8.9	8.9	10.3	<0.001 <0.001	<0.001	0.002	11.9 12.2	12.1	12.8	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
						В	0.06 0.59	58 304	26.5 26.5	26.5		32.3 32.3	32.3	8.0 8.0	8.0	94.8 94.6	94.7	6.4	6.4	6.4	13.4 11.9	12.7		<0.001 0.005	0.003		16.4 16.8	16.6		0.06	0.06		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/10/26

Tide	Monitoring	Weather	Sea	Sampling	Water Depth	Depth	Current	Current	T	emperature (°	C)	Salinity	ppt)	pl	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	Т	urbidity(NTU)	Total Res	idual Chlorir	ne (mg/L)	Susper	nded Solids	(mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	mand (mg/L)
liuc	Station	Condition	Condition**	Time	(m)	Level **	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.26	109	26.2	26.2		32.2	32.2	8.0	8.0	97.6	97.7	6.6	6.6		1.9	1.9		<0.001	<0.001		2.6	2.5		0.15	0.15		<1.0	<1.0	
							0.26	109	26.2			32.2		8.0		97.8		6.6		6.6	1.9			<0.001			2.4		!	0.15	*****		<1.0		.
	E2	Fine	Moderate	9:47	9.4	I м	0.13	201	26.2	26.2	26.2	32.2	32.2	8.0	8.0	96.7	97.2	6.5			2.0	2.0	2.6	<0.001	0.003	0.002	3.0	3.3	3.8	0.16	0.16	0.15	<1.0	<1.0	<1.0
				1			0.45	95	26.2			32.2		8.0		97.6		6.6			2.0			0.004			3.5			0.15			<1.0		. 1
						В	0.76	141	26.2	26.2		32.3	32.3	8.0	8.0	96.7	96.4	6.5	6.5	6.5	3.9	3.9		<0.001	0.001		5.6	5.8		0.15	0.15		<1.0	<1.0	.
Mid-El	ob					_	0.22	112	26.2			32.3		8.0		96.1		6.5			3.9			0.001			5.9			0.15			<1.0		
						s	0.32	227	26.0	26.0		32.6	32.6	7.9	7.9	99.5	99.5	6.7	6.7		1.5	1.5		<0.001	<0.001		2.1	2.2		0.09	0.09		<1.0	<1.0	.
							0.32	227	26.0			32.6		8.0		99.5		6.7		6.7	1.5			<0.001			2.2		ļ	0.09			<1.0		.
	IM6	Fine	Moderate	9:14	17.5	M	0.27	317	26.0	26.0	26.0	32.7	32.7	7.9	7.9	98.5	98.4	6.6	6.6		1.8	1.8	2.3	<0.001	0.005	0.002	2.3	2.3	2.7	0.08	0.09	0.09	<1.0 <1.0	<1.0	<1.0
						_	0.24	65	26.0			32.7	_	7.9		98.3		6.6			1.8			0.009			2.3			0.09			<1.0		
						В	0.22	333	26.0 26.0	26.0		32.7	32.7	7.9 7.9	7.9	98.9 98.8	98.9	6.7	6.7	6.7	3.5	3.5		<0.001	<0.001		3.5 4.0	3.8		0.08	0.08		<1.0	<1.0	
_			-			_	1.03	279	26.4			32.4	_	8.0		102.6		6.0			3.5			<0.001			2.3			0.00			<1.0		
						S	0.84	271	26.4	26.4		32.4	32.4	8.0	8.0	103.2	102.9	6.0	6.9		0.9	1.0		0.002	0.002		2.1	2.2		0.10	0.10		<1.0	<1.0	.
						_	0.41	216	26.1			32.6		8.0		97.4		6.6		6.7	1.6			<0.001			2.7			0.09			<1.0		
	F3	Fine	Moderate	16:10	17.8	M	0.36	222	26.1	26.1	26.2	32.6	32.6	8.0	8.0	97.9	97.7	6.6	6.6		1.5	1.6	2.1	<0.001	<0.001	0.002	2.9	2.8	3.3	0.09	0.09	0.09	<1.0	<1.0	<1.0
						_	0.12	170	26.0			32.6		8.0		96.0		6.5			3.7			<0.001			4.9		t	0.09			<1.0		.
Mid-						l B	0.56	253	26.0	26.0		32.6	32.6	8.0	8.0	96.0	96.0	6.5	6.5	6.5	3.7	3.7		0.008	0.005		5.1	5.0		0.09	0.09		<1.0	<1.0	.
Floor	i					_	0.73	342	26.4	26.4		32.5	32.5	7.9	7.9	99.9	100.0	6.7	0.7		1.7	1.8		< 0.001	<0.001		2.1			0.10	0.40		<1.0	.4.0	
						1 °	0.37	6	26.4	20.4		32.5	32.5	7.9	7.9	100.1	100.0	6.7	0.7	6.7	1.8	1.0		< 0.001	<0.001		2.2	1 2.2		0.10	0.10		<1.0	<1.0	.
	IM6	Fine	Moderate	15:56	16.4		0.36	222	26.3	26.3	26.3	32.5	32.5	7.9	7.9	98.9	99.0	6.7	6.7	6.7	2.1	2.3	20	<0.001	<0.001	<0.001	2.6	2.7	3.1	0.09	0.09	0.09	<1.0	<1.0	<1.0
	livio	FILLE	Woderate	15.56	10.4	IVI	0.36	222	26.3	20.3	20.3	32.5	32.5	7.9	7.9	99.1	99.0	6.7	6.7		2.4	2.3	2.0	<0.001	V0.001	V0.001	2.8	2.1	3.1	0.09	0.09	0.00	<1.0	<1.0	
					1	В	0.12	168	26.2	26.2		32.5	32.5	7.9	7.9	99.6	99.3	6.7	6.7	6.7	3.7	3.8		<0.001	<0.001		4.5	44]	0.09	0.09		<1.0	<1.0	.
							0.49	281	26.2	20.2		32.5	02.0	7.9	1.0	98.9	00.0	6.7	0.7	0.7	3.8	0.0		<0.001	-0.001		4.2			0.09	0.00		<1.0	-1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/11/1

	ide Mon	nitoring	Weather	Sea	Sampling	Water Depth	Depth	Current	Current	T	emperature (°	C)	Salinity	(ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	1	urbidity(NTU)	Total Res	idual Chlorin	e (mg/L)	Suspen	ded Solids ((mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	emand (mg/L)
- 1 "	St St	tation	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
							S	0.08	167 167	26.5 26.5	26.5		32.1 32.1	32.1	8.1 8.1	8.1	116.1	116.7	7.8	7.8		3.3	3.3		<0.001	<0.001		7.2	7.3		0.11	0.11		<1.0 <1.0	<1.0	
		E2	Fine	Rough	14:00	9.5	М	0.04	106	26.4	26.4	26.4	32.1 32.1	32.1	8.0	8.0	110.5	111.2	7.4	7.5	7.7	4.1	4.1	9.6	<0.001	0.003	0.002	8.2 8.6	8.4	16.2	0.11	0.11	0.12	<1.0 <1.0	<1.0	<1.0
							В	0.05	140	26.3 26.3	26.3		32.1 32.1	32.1	8.0	8.0	105.5	106.0	7.1	7.1	7.1	21.6	21.5		<0.001	<0.001		30.5 35.4	33.0		0.15	0.15		<1.0 <1.0	<1.0	
Mid	-Ebb						s	0.24	240 273	26.3 26.4	26.3		32.1 32.1	32.1	7.9 7.9	7.9	111.1	111.3	7.5 7.5	7.5	7.4	2.0	2.0		<0.001	<0.001		5.3 5.7	5.5		0.14	0.14		<1.0 <1.0	<1.0	
		IM6	Fine	Rough	13:25	16.9	М	0.37 0.37	241 241	26.1 26.1	26.1	26.1	32.5 32.4	32.4	8.0 8.0	8.0	109.4 110.0	109.7	7.4 7.4	7.4	7.4	3.6 3.5	3.6	3.3	0.003 <0.001	0.002	0.001	6.3 6.7	6.5	6.9	0.08	0.11	0.10	<1.0 <1.0	<1.0	<1.0
							В	0.25 0.25	141 141	26.0 26.0	26.0		32.6 32.6	32.6	8.0 8.0	8.0	106.9 107.2	107.1	7.2 7.2	7.4	7.2	4.5 4.1	4.3		<0.001 <0.001	<0.001		8.6 9.0	8.8		0.05 0.05	0.05		<1.0 <1.0	<1.0	
							s	0.46 0.14	292 147	26.0 26.0	26.0		32.4 32.4	32.4	8.1 8.1	8.1	106.4 106.7	106.6	7.2 7.2	7.2	7.2	1.5 1.4	1.5		<0.001 <0.001	<0.001		3.6	3.4		0.08	0.08		<1.0 <1.0	<1.0	
		F3	Cloudy	Moderate	08:32	17	М	0.21 0.21	287 287	26.0 26.0	26.0	26.0	32.6 32.6	32.6	8.1 8.1	8.1	106.2 105.7	106.0	7.2 7.1	7.2		1.5 1.5	1.5	2.7	<0.001	<0.001	0.001	4.2	4.3	4.8	0.05	0.05	0.05	<1.0 <1.0	<1.0	<1.0
	lid-						В	0.39	254 254	25.9 25.9	25.9		32.7 32.7	32.7	8.1 8.1	8.1	105.1 106.3	105.7	7.1 7.2	7.1	7.1	5.0 5.3	5.2		<0.001 0.002	0.002		6.8 6.4	6.6		0.03	0.03		<1.0 <1.0	<1.0	
Fi	ood						s	0.28	297 155	26.0 26.0	26.0		32.3 32.3	32.3	8.0 8.0	8.0	103.4 103.0	103.2	7.0 7.0	7.0	7.0	1.6 1.5	1.6		<0.001 <0.001	<0.001		3.9 4.4	4.2		0.12 0.12	0.12		<1.0 <1.0	<1.0	
		IM6	Cloudy	Moderate	08:18	16.5	М	0.66 0.66	117 117	26.0 26.0	26.0	26.0	32.4 32.4	32.4	8.0 8.0	8.0	103.1 103.0	103.1	7.0 7.0	7.0		3.1 3.1	3.1	5.0	<0.001 0.008	0.005	0.003	6.0 5.4	5.7	8.0	0.10 0.11	0.11	0.09	<1.0 <1.0	<1.0	<1.0
							В	0.38	305 305	26.0 26.0	26.0		32.5 32.6	32.6	8.0 8.0	8.0	103.6	104.1	7.0 7.1	7.0	7.0	10.4	10.4		0.008 <0.001	0.005		14.5 13.8	14.2		0.06	0.06		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/11/10

Tide	Monito	oring Wea	ather	Sea	Sampling	Water Depth		Current	Current	Ten	nperature (°	C)	Salinit	(ppt)		ρH	DO Satu	ration (%)	Dissol	lved Oxygen	mg/L)	Turbi	idity(NTU)		Total Res	idual Chlorin	ne (mg/L)	Susper	nded Solids	(mg/L)	Total Inorg	anic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	emand (mg/L)
110	Stati	tion Cond	dition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value A	verage	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
							S	0.48 0.48	220 220	25.7 25.7	25.7		31.8 31.8	31.8	8.2 8.2	8.2	108.8	108.9	7.4	7.4	7.3	2.1	2.1		<0.001	<0.001		3.4	3.2		0.04	0.04		<1.0 <1.0	<1.0	
	E2	2 Clo	oudy	Moderate	10:05	9.2	М	0.29 0.29	112 112	25.4 25.4	25.4	25.5	31.9 31.9	31.9	8.2 8.2	8.2	104.9 105.3	105.1	7.2 7.2	7.2	7.5	1.8	1.9	3.6	<0.001	0.002	0.001	3.9	3.8	6.4	0.05	0.05	0.05	<1.0 <1.0	<1.0	<1.0
Mid-E	Nh.						В	0.10 0.10	31 31	25.3 25.3	25.3		32.2 32.2	32.2	8.2 8.2	8.2	99.7 99.5	99.6	6.8	6.8	6.8	7.0 6.5	6.8		<0.001	<0.001		12.0 12.7	12.4		0.06	0.06		<1.0 <1.0	<1.0	
Mid-L							S	0.40 0.40	253 253	25.3 25.3	25.3		32.8 32.8	32.8	8.2 8.2	8.2	103.1 103.3	103.2	7.0 7.1	7.0	7.0	1.3	1.2		<0.001	<0.001		2.7	2.5		0.03	0.03		<1.0 <1.0	<1.0	
	IM6	16 Clo	oudy	Moderate	9:33	17.0	М	0.45 0.45	257 257	25.2 25.2	25.2	25.2	32.8 32.8	32.8	8.2 8.2	8.2	100.3	100.4	6.9 6.9	6.9	7.0	1.7	1.7	1.8	<0.001 0.001	0.001	0.001	3.2 2.8	3.0	3.3	0.03 <0.02	0.03	0.03	<1.0 <1.0	<1.0	<1.0
							В	0.09	169 169	25.2 25.2	25.2		32.8 32.9	32.9	8.2 8.2	8.2	97.9 97.9	97.9	6.7 6.7	6.7	6.7	2.6	2.6		<0.001 <0.001	<0.001		4.6 4.2	4.4		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
							s	0.78 0.78	291 291	26.3 26.3	26.3		32.6 32.6	32.6	8.1 8.1	8.1	110.7 113.2	112.0	7.4 7.6	7.5	7.1	0.3	0.3		<0.001	<0.001		3.2 2.8	3.0		<0.02 0.02	0.02		<1.0 <1.0	<1.0	
	F3	3 Fi	ine	Rough	15:58	18	М	0.45 0.45	247 247	25.9 25.9	25.9	26.0	32.9 32.9	32.9	8.0 8.0	8.0	98.2 98.7	98.5	6.6 6.7	6.7		1.3	1.3	1.7	<0.001	<0.001	<0.001	4.0	4.2	4.4	<0.02 <0.02	<0.02	0.02	<1.0 <1.0	<1.0	<1.0
Mid							В	0.56 0.56	319 319	25.9 25.9	25.9		32.9 32.9	32.9	8.0 8.0	8.0	97.8 96.8	97.3	6.6 6.5	6.6	6.6	3.4	3.5		<0.001	<0.001		6.1 5.8	6.0		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
Floo	'						s	0.57 0.57	302 302	26.4 26.4	26.4		32.6 32.6	32.6	8.1 8.1	8.1	113.6 115.0	114.3	7.6 7.7	7.7	7.4	0.8	0.8		<0.001 <0.001	<0.001		2.3 2.5	2.4		0.02	0.02		<1.0 <1.0	<1.0	
	IME	16 Fi	ine	Rough	15:43	16.6	М	0.47 0.47	299 299	26.2 26.2	26.2	26.2	32.7 32.7	32.7	8.1 8.1	8.1	105.5 107.5	106.5	7.1 7.2	7.2		1.8	1.7	2.8	<0.001	<0.001	<0.001	4.0	4.0	4.6	0.02 <0.02	0.02	0.02	<1.0 <1.0	<1.0	<1.0
							В	0.21 0.26	3 94	25.9 25.9	25.9		32.9 32.9	32.9	8.2 8.1	8.2	102.1 99.7	100.9	6.9 6.7	6.8	6.8	5.6 6.2	5.9		<0.001	<0.001		7.6 7.1	7.4		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/11/16

Tic	Monitorin	ng Weather	Sea	Sampling	Water Depth	Depth	Current	Current	T	emperature (°	C)	Salinity	(ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	Т	urbidity(NTU		Total Res	idual Chlorin	e (mg/L)	Suspen	ded Solids ((mg/L)	Total Inore	anic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	mand (mg/L)
110	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.65 0.63	200 156	24.9 24.9	24.9		32.5 32.5	32.5	8.1 8.1	8.1	94.5 93.9	94.2	6.5 6.5	6.5	6.5	10.2 10.4	10.3		<0.001 <0.001	<0.001		13.6 15.1	14.4		0.11 0.11	0.11		<1.0 <1.0	<1.0	
	E2	Cloudy	Rough	13:45	9.0	М	0.43 0.43	177 177	24.9 24.9	24.9	24.9	32.5 32.5	32.5	8.1 8.1	8.1	95.5 95.2	95.4	6.6	6.6	0.5	12.0 11.1	11.6	11.0	<0.001	<0.001	<0.001	13.1 13.6	13.4	13.5	0.11 0.11	0.11	0.11	<1.0 <1.0	<1.0	<1.0
Mid-E	bb					В	0.38 0.29	258 139	24.9 24.9	24.9		32.5 32.5	32.5	8.1 8.1	8.1	99.7 98.3	99.0	6.9 6.8	6.8	6.8	10.6 11.6	11.1		<0.001 <0.001	<0.001		13.4 11.9	12.7		0.11 0.11	0.11		<1.0 <1.0	<1.0	
INIIU						S	0.70 0.70	105 105	25.2 25.2	25.2		32.9 32.9	32.9	8.1 8.1	8.1	95.3 95.2	95.3	6.5 6.5	6.5	6.5	3.9	3.9		<0.001 <0.001	<0.001		5.4 5.5	5.5		0.06	0.06		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	13:07	17.0	М	0.38	292 108	25.1 25.2	25.2	25.1	32.9 32.9	32.9	8.1 8.1	8.1	96.1 95.9	96.0	6.6 6.6	6.6	0.0	4.2 4.1	4.2	5.6	<0.001 <0.001	<0.001	<0.001	5.2 6.0	5.6	6.7	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
						В	0.10 0.10	22	25.1 25.1	25.1		32.9 32.9	32.9	8.1 8.1	8.1	97.7 96.4	97.1	6.7 6.6	6.6	6.6	8.9 8.8	8.9		<0.001 <0.001	<0.001		6.8 11.5	9.2		0.06	0.06		<1.0 <1.0	<1.0	
						S	0.49 1.02	280 294	25.2 25.2	25.2		32.9 32.9	32.9	8.2 8.2	8.2	93.2 93.2	93.2	6.4 6.4	6.4	6.4	3.2 3.3	3.3		<0.001 0.002	0.002		4.5 4.7	4.6		0.06	0.06		<1.0 <1.0	<1.0	
	F3	Cloudy	Rough	08:40	18	М	0.28 0.38	189 118	25.2 25.2	25.2	25.2	32.9 32.9	32.9	8.2 8.2	8.2	93.6 93.4	93.5	6.4 6.4	6.4	0.4	4.8 5.2	5.0	7.2	<0.001 0.002	0.002	0.001	6.1	6.1	10.0	0.07	0.08	0.06	<1.0 <1.0	<1.0	<1.0
Mic						В	0.59 0.59	351 351	25.2 25.2	25.2		32.9 32.9	32.9	8.1 8.1	8.1	95.4 94.2	94.8	6.5 6.4	6.5	6.5	13.2 13.2	13.2		<0.001 <0.001	<0.001		18.8 19.8	19.3		0.04	0.04		<1.0 <1.0	<1.0	
Flo	d					s	0.40	337 337	25.2 25.1	25.2		32.8 32.8	32.8	8.1 8.1	8.1	93.0 93.3	93.2	6.4 6.4	6.4	6.4	3.5 3.2	3.4		<0.001 <0.001	<0.001		4.3 4.6	4.5		0.06 0.04	0.05		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	08:26	16	М	0.05 0.45	2 250	25.2 25.2	25.2	25.2	32.8 32.8	32.8	8.1 8.1	8.1	92.8 92.9	92.9	6.3 6.4	6.4	0.4	4.6 4.8	4.7	4.9	<0.001 <0.001	<0.001	<0.001	9.6 7.1	8.4	7.3	0.04	0.06	0.05	<1.0 <1.0	<1.0	<1.0
						В	0.35 0.15	96 349	25.2 25.2	25.2		32.8 32.8	32.8	8.1 8.1	8.1	94.9	94.4	6.5	6.5	6.5	6.1 7.0	6.6		<0.001 <0.001	<0.001		10.1 8.0	9.1		0.04	0.05		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/11/23

Tide	Monitoring	Weather	Sea	Sampling	Water Depth		Current	Current	To	emperature (°	C)	Salinity	(ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	Т	urbidity(NTU)	Total Res	sidual Chlorin	ne (mg/L)	Suspe	nded Solids	(mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	emand (mg/L)
liuc	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.33	152 152	23.4 23.4	23.4		32.8 32.8	32.8	8.1 8.1	8.1	93.6 93.7	93.7	6.6	6.6	6.6	1.6	1.7		<0.001	<0.001		2.3	2.5		0.14 0.15	0.15		<1.0 <1.0	<1.0	
	E2	Cloudy	Calm	8:00	9.0	М	0.11 0.11	281 281	23.4 23.4	23.4	23.4	32.8 32.8	32.8	8.1 8.1	8.1	94.4 93.9	94.2	6.7 6.6	6.6	0.0	1.8	1.9	2.2	<0.001	<0.001	<0.001	3.0	3.2	3.4	0.14 0.14	0.14	0.14	<1.0 <1.0	<1.0	<1.0
Mid-El						В	0.20 0.31	6 76	23.5 23.5	23.5		32.9 32.9	32.9	8.1 8.1	8.1	96.7 95.2	96.0	6.8	6.8	6.8	3.0	3.0		<0.001	<0.001		4.8 4.5	4.7		0.13 0.13	0.13		<1.0 <1.0	<1.0	
IVIIU-EI						s	0.28 0.28	93 93	23.7 23.7	23.7		33.1 33.1	33.1	8.1 8.1	8.1	93.0 93.1	93.1	6.5 6.5	6.5	6.5	2.3	2.3		<0.001	0.002		2.8	2.6		0.07	0.08		<1.0 <1.0	<1.0	
	IM6	Cloudy	Calm	7:57	17.0	М	0.43 0.13	233 330	23.7 23.7	23.7	23.7	33.1 33.1	33.1	8.1 8.1	8.1	93.2 93.2	93.2	6.5 6.5	6.5	0.5	2.4	2.4	2.5	<0.001	<0.001	0.001	3.5 3.9	3.7	3.5	0.08	0.08	0.08	<1.0 <1.0	<1.0	<1.0
						В	0.15 0.15	113 113	23.7 23.7	23.7		33.1 33.1	33.1	8.1 8.1	8.1	95.6 94.8	95.2	6.7 6.6	6.7	6.7	2.6	2.8		<0.001	<0.001		4.0	4.2		0.08	0.08		<1.0 <1.0	<1.0	
						S	0.29 0.29	244 244	24.6 24.6	24.6		33.1 33.1	33.1	8.1 8.1	8.1	100.8 101.6	101.2	7.0 7.0	7.0	6.9	1.3	1.3		<0.001	<0.001		1.8	1.7		0.06	0.06		<1.0 <1.0	<1.0	
	F3	Fine	Calm	14:55	17.8	М	0.21 0.31	64 46	23.8 23.8	23.8	24.1	33.1 33.1	33.1	8.1 8.1	8.1	97.1 96.6	96.9	6.8 6.8	6.8	0.0	2.5	2.4	2.5	<0.001	<0.001	<0.001	3.0 2.8	2.9	2.7	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
Mid-						В	0.21 0.50	10 335	23.8 23.8	23.8		33.1 33.1	33.1	8.1 8.1	8.1	98.0 97.3	97.7	6.9 6.8	6.8	6.8	4.0 3.6	3.8		<0.001	<0.001		3.7	3.5		0.06	0.06		<1.0 <1.0	<1.0	
Floor						S	0.52 0.52	309 309	24.0 24.0	24.0		33.0 33.0	33.0	8.0 8.0	8.0	98.0 98.0	98.0	6.8 6.8	6.8	6.8	1.7	1.7		<0.001 0.007	0.004		4.0 3.7	3.9		0.08	0.08		<1.0 <1.0	<1.0	
	IM6	Fine	Calm	14:39	16	М	0.35 0.85	276 197	23.8 23.8	23.8	23.9	33.1 33.1	33.1	8.0 8.0	8.0	97.2 96.8	97.0	6.8 6.8	6.8	5.0	2.4	2.3	3.1	<0.001	<0.001	0.002	4.4	4.6	4.8	0.07	0.07	0.07	<1.0 <1.0	<1.0	<1.0
						В	0.51 0.51	290 290	23.8 23.8	23.8		33.1 33.1	33.1	8.0 8.0	8.0	98.5 98.2	98.4	6.9 6.9	6.9	6.9	5.1 5.6	5.4		<0.001	<0.001		6.0 5.6	5.8		0.07	0.07		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/11/29

Tide	Monitoring	Weather	Sea	Sampling	Water Depth		Current	Current	To	mperature (°	C)	Salinity	(ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	Т	urbidity(NTU)	Total Res	idual Chlorin	e (mg/L)	Suspe	nded Solids	(mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Biochen	nical Oxygen De	emand (mg/L)
lide	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						S	0.03	239 25	23.6 23.6	23.6		32.8 32.8	32.8	8.3 8.3	8.3	97.0 96.9	97.0	6.8	6.8	68	9.1 8.9	9.0		<0.001	<0.001		10.6 10.6	10.6		0.14 0.14	0.14		<1.0 <1.0	<1.0	
	E2	Cloudy	Rough	13:11	9.2	М	0.53 0.53	59 59	23.6 23.6	23.6	23.6	32.8 32.8	32.8	8.3 8.3	8.3	96.1 96.4	96.3	6.8	6.8	0.0	12.2 11.4	11.8	12.6	<0.001	<0.001	<0.001	13.1 12.8	13.0	15.4	0.14 0.12	0.13	0.14	<1.0 <1.0	<1.0	<1.0
Mid-E	h					В	0.10 0.17	168 173	23.6 23.6	23.6		32.8 32.8	32.8	8.3 8.3	8.3	97.6 96.8	97.2	6.9	6.8	6.8	18.2 15.8	17.0		<0.001	<0.001		22.7 22.8	22.8		0.14 0.14	0.14		<1.0 <1.0	<1.0	
IWIG-L						S	0.39	96 96	23.6 23.6	23.6		33.1 33.1	33.1	8.2 8.2	8.2	97.6 97.6	97.6	6.9 6.9	6.9	6.8	8.4 8.9	8.7		<0.001	0.001		10.2 10.3	10.3		0.07	0.07		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	12:33	16.8	М	0.32	25 224	23.6 23.6	23.6	23.6	33.1 33.1	33.1	8.1 8.1	8.1	96.9 96.9	96.9	6.8	6.8	0.0	10.4	10.7	10.4	<0.001	<0.001	0.001	13.6 13.3	13.5	12.7	0.06	0.07	0.07	<1.0 <1.0	<1.0	<1.0
						В	0.26 0.40	7 115	23.6 23.6	23.6		33.1 33.1	33.1	8.0 8.1	8.0	97.8 97.1	97.5	6.9 6.8	6.8	6.8	11.9 12.1	12.0		<0.001	<0.001		14.4 14.1	14.3		0.07	0.07		<1.0 <1.0	<1.0	
						S	0.48 0.48	303 303	23.6 23.6	23.6		33.1 33.1	33.1	8.3 8.3	8.3	99.6 99.8	99.7	7.0 7.0	7.0	7.0	5.3 5.6	5.5		<0.001	0.005		6.4 6.3	6.4		0.05	0.05		<1.0 <1.0	<1.0	
	F3	Cloudy	Rough	07:54	17.9	М	0.48 0.23	175 253	23.7 23.7	23.7	23.7	33.2 33.2	33.2	8.3 8.3	8.3	98.9 98.9	98.9	6.9 6.9	6.9	7.0	9.1 9.5	9.3	13.5	<0.001	<0.001	0.003	9.7	9.9	15.6	0.04	0.04	0.04	<1.0 <1.0	<1.0	<1.0
Mid-						В	0.25 0.25	326 326	23.7 23.7	23.7		33.2 33.2	33.2	8.3 8.3	8.3	98.2 97.9	98.1	6.9 6.9	6.9	6.9	27.2 24.4	25.8		<0.001 0.003	0.002		30.2 30.7	30.5		0.03	0.04		<1.0 <1.0	<1.0	
Floo						s	0.37 0.15	338 303	23.6 23.6	23.6		33.2 33.2	33.2	8.2 8.2	8.2	97.1 97.0	97.1	6.8 6.8	6.8	6.8	9.2 9.3	9.3		<0.001	<0.001		11.5 11.2	11.4		0.04	0.04		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	07:28	16.6	М	0.17 0.23	246 264	23.6 23.6	23.6	23.6	33.3 33.2	33.2	8.1 8.1	8.1	96.9 96.7	96.8	6.8 6.8	6.8	0.0	9.7 9.2	9.5	9.9	<0.001	<0.001	<0.001	12.7 12.2	12.5	12.6	0.04	0.04	0.04	<1.0 <1.0	<1.0	<1.0
						В	0.12 0.12	282 282	23.6 23.6	23.6		33.3 33.3	33.3	8.0 8.0	8.0	97.5 97.2	97.4	6.8 6.8	6.8	6.8	11.2 11.0	11.1		<0.001	<0.001		13.8 14.0	13.9		0.04	0.04		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/12/08

Tid	Monitoring	Weather	Sea	Sampling	Water Depth		Current	Current	To	emperature (°	C)	Salinity	(ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen (mg/L)	Т	urbidity(NTU)		Total Res	idual Chlorin	e (mg/L)	Susper	nded Solids	(mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Biocher	nical Oxygen De	mand (mg/L)
110	Station	Condition	Condition**	Time	(m)	Level **	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.34	115 115	22.3 22.3	22.3		32.9 32.9	32.9	8.2 8.2	8.2	111.7 112.4	112.1	8.0 8.1	8.1	8.0	3.4	3.5		<0.001	<0.001		4.9 4.6	4.8		0.05	0.05		1.3 1.2	1.3	
	E2	Cloudy	Calm	8:06	9.2	М	0.21 0.37	320 215	22.3 22.3	22.3	22.3	32.9 32.9	32.9	8.2 8.2	8.2	110.0 110.5	110.3	7.9 7.9	7.9	0.0	3.7 3.4	3.6	3.6	<0.001	<0.001	<0.001	5.8 5.4	5.6	5.5	0.05 0.05	0.05	0.05	1.1 1.2	1.2	1.2
Mid-E						В	0.23 0.28	340 130	22.4 22.4	22.4		32.9 32.9	32.9	8.2 8.2	8.2	108.3 109.4	108.9	7.8 7.9	7.8	7.8	3.4	3.7		<0.001	<0.001		6.0 6.2	6.1		0.04	0.05		1.5 1.1	1.3	.
WIIG-E						s	0.14 0.16	321 190	22.7 22.7	22.7		33.2 33.2	33.2	8.1 8.1	8.1	100.5 100.3	100.4	7.2 7.1	7.1	7.1	1.1	1.1		<0.001 <0.001	<0.001		2.3	2.4		0.04	0.04		<1.0 <1.0	<1.0	
	IM6	Cloudy	Calm	7:34	16.8	М	0.38	263 19	22.7 22.7	22.7	22.7	33.2 33.2	33.2	8.1 8.1	8.1	99.8 100.1	100.0	7.1 7.1	7.1	7.1	1.2	1.2	1.3	<0.001	<0.001	<0.001	2.9 2.5	2.7	2.8	0.04	0.04	0.04	<1.0 <1.0	<1.0	<1.0
						В	0.64 0.64	164 164	22.7 22.7	22.7		33.2 33.2	33.2	8.1 8.1	8.1	99.7 99.2	99.5	7.1 7.1	7.1	7.1	1.7	1.8		<0.001	<0.001		3.6 3.3	3.5		0.04	0.04		<1.0 <1.0	<1.0	
						S	0.49 0.49	305 305	22.9 22.9	22.9		33.2 33.2	33.2	8.2 8.2	8.2	105.2 106.6	105.9	7.5 7.6	7.5	7.3	1.2	1.2		<0.001 <0.001	<0.001		2.1	2.2		0.02 0.02	0.02		<1.0 <1.0	<1.0	
	F3	Cloudy	Rough	14:30	18.2	М	0.09	196 196	22.8 22.8	22.8	22.8	33.3 33.3	33.3	8.1 8.1	8.1	98.0 98.9	98.5	7.0 7.0	7.0	7.0	2.1	2.2	2.9	<0.001	<0.001	<0.001	3.2 2.9	3.1	3.4	0.04	0.04	0.04	<1.0 <1.0	<1.0	<1.0
Mid						В	0.26	12 324	22.8 22.8	22.8		33.3 33.3	33.3	8.1 8.1	8.1	97.4 96.5	97.0	6.9 6.9	6.9	6.9	5.4 5.3	5.4		<0.001	<0.001		5.2 4.7	5.0		0.05	0.05		<1.0 <1.0	<1.0	
Floo	d					s	1.7	268 268	23.0 23.0	23.0		33.3 33.3	33.3	8.1 8.1	8.1	103.3 103.7	103.5	7.3 7.4	7.3	72	1.7 2.0	1.9		<0.001 0.003	0.002		2.6 2.6	2.6		0.02 0.02	0.02		<1.0 <1.0	<1.0	
	IM6	Cloudy	Rough	14:12	16.7	М	0.24 0.22	60 182	22.9 22.9	22.9	22.9	33.3 33.3	33.3	8.1 8.1	8.1	100.6 100.8	199.7	7.1 7.2	7.2	2	2.3	2.3	2.4	<0.001 <0.001	<0.001	0.001	3.8	3.6	3.6	0.04	0.04	0.03	<1.0 <1.0	<1.0	<1.0
						В	1.41 0.39	238 19	22.8 22.8	22.8		33.3 33.3	33.3	8.0 8.0	8.0	99.9 99.9	99.9	7.1 7.1	7.1	7.1	3.2	3.2		<0.001 0.002	0.002		4.4 5.0	4.7		0.04	0.04		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/12/11

Tid	Monitorin	Weather	Sea	Sampling	Water Depth		Current	Current	Ter	mperature (°	°C)	Salinit	y (ppt)		ρH	DO Satur	ation (%)	Dissol	ved Oxygen (mg/L)	Turbi	idity(NTU)	1	Total Res	idual Chlorin	e (mg/L)	Susper	nded Solids ((mg/L)	Total Inor	ganic Nitrog	en (mg/L)	5-day Bioche	mical Oxygen De	emand (mg/L)
110	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value A	verage	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						s	0.30 0.07	326 255	23.2 23.2	23.2		32.8 32.8	32.8	8.3 8.3	8.3	131.8 134.5	133.2	9.3 9.5	9.4	9.1	1.2	1.2		<0.001 <0.001	<0.001		4.5 4.3	4.4		<0.02 <0.02	<0.02		1.5 1.4	1.5	
	E2	Cloudy	Moderate	10:44	9.1	М	0.05	231 182	23.1 23.1	23.1	23.1	33.0 33.0	33.0	8.3 8.3	8.3	125.0 125.4	125.2	8.9 8.9	8.9		1.6	1.5	1.6	<0.001 <0.001	<0.001	<0.001	3.9 4.1	4.0	4.0	<0.02 <0.02	<0.02	<0.02	1.2	1.2	1.2
Mid-E	nh.					В	0.52 0.38	94 192	23.1 23.1	23.1		33.0 33.0	33.0	8.3 8.3	8.3	121.8 123.1	122.5	8.6 8.7	8.7	8.7	2.1 1.8	2.0		<0.001 <0.001	<0.001		3.4	3.6		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
						s	0.21 0.21	120 120	23.0 23.0	23.0		33.2 33.2	33.2	8.1 8.1	8.1	112.1 112.5	112.3	7.9 8.0	8.0	7.9	1.0	1.0		<0.001 0.002	0.002		3.0	3.2		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
	IM6	Cloudy	Moderate	10:13	16.9	М	0.21	313 313	23.0 23.0	23.0	23.0	33.2 33.2	33.2	8.1 8.1	8.1	110.0 110.2	110.1	7.8 7.8	7.8		1.3	1.2	1.4	<0.001 0.002	0.002	0.003	3.5 3.2	3.4	3.5	<0.02 <0.02	<0.02	<0.02	<1.0 <1.0	<1.0	<1.0
						В	0.08	221 221	23.0 23.0	23.0		33.2 33.2	33.2	8.1 8.1	8.1	108.3 108.5	108.4	7.7	7.7	7.7	1.9	2.1		<0.001 0.008	0.005		4.1 3.7	3.9		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
						S	0.03	243 98	23.6 23.5	23.6		33.2 33.2	33.2	8.2 8.2	8.2	118.4 118.4	118.4	8.3 8.3	8.3	8.1	0.2	0.2		<0.001	<0.001		1.2	1.4		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
	F3	Cloudy	Moderate	15:37	18.1	М	0.07	285 304	23.0 23.0	23.0	23.2	33.2 33.2	33.2	8.2 8.2	8.2	110.0 111.6	110.8	7.8 7.9	7.9	0.1	1.2	1.1	0.9	<0.001	<0.001	<0.001	1.8	1.9	1.9	<0.02 <0.02	<0.02	0.02	<1.0 <1.0	<1.0	<1.0
Mid						В	0.4	4	23.0 23.0	23.0		33.2 33.3	33.3	8.2 8.2	8.2	106.8 106.7	106.8	7.6 7.6	7.6	7.6	1.3	1.3		<0.001	<0.001		2.5	2.4		<0.02 0.02	0.02		<1.0 <1.0	<1.0	
Floo	'					S	0.13 0.13	343 343	23.1 23.1	23.1		33.2 33.2	33.2	8.1 8.1	8.1	114.4 115.0	114.7	8.1 8.1	8.1	8.0	0.5	0.6		<0.001 <0.001	<0.001		1.8	2.0		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	
	IM6	Cloudy	Moderate	15:23	16.7	М	0.67	5	23.0 23.0	23.0	23.0	33.3 33.3	33.3	8.1 8.1	8.1	109.7 110.5	110.1	7.8 7.8	7.8	0.0	1.1	1.1	1.7	<0.001	<0.001	<0.001	2.8	2.6	2.8	<0.02 <0.02	<0.02	<0.02	<1.0 <1.0	<1.0	<1.0
						В	0.43	286 341	23.0 23.0	23.0		33.3 33.3	33.3	8.1 8.1	8.1	107.7 107.8	107.8	7.6 7.6	7.6	7.6	3.3 3.4	3.4		<0.001 <0.001	<0.001		3.6 4.2	3.9		<0.02 <0.02	<0.02		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged
** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/12/18

	. I N	Monitorina	Weather	Sea	Sampling	Sampling Water Depth Depth		Current	Current	Te	emperature (°	°C)	Salinity	(ppt)	p	Н	DO Satu	ration (%)	Dissol	ved Oxygen (ma/L)	Т	urbiditv(NTU	1)	Total Res	idual Chlorin	ne (ma/L)	Susper	nded Solids	(ma/L)	Total Inorgan	nic Nitroge	en (ma/L)	5-day Biocher	nical Oxygen De	mand (mg/L)
Tie	ie	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*		verage	DA*	Value	Average	DA*
							S	0.57 0.20	132 35	21.8 21.8	04.0		32.8 32.8	21.8	8.1 8.1	8.1	95.9 95.4	95.7	7.0 6.9	6.9	7.0	10.4 9.7	10.1		<0.001	<0.001		10.5 10.8	10.7		0.16 0.16	0.16		<1.0 1.8	1.4	
		E2	Cloudy	Moderate	16:33	9.4	М	M 0.21 0.21	263 4	21.0		21.8	32.8 32.8	21.8	8.1 8.1	8.1	96.8 96.2	96.5	7.0 7.0	7.0	7.0	10.9 10.5	10.7	11.3	<0.001 <0.001	<0.001	0.001	11.8 12.1	12.0	12.2	0.16 0.16	0.16	0.16	1.5 1.9	1.7	2.1
Mid-	Fbb —						В	0.19 0.33	175 282	21.8 21.8	21.8		32.7 32.7	21.7	8.1 8.1	8.1	100.3 98.7	99.5	7.3 7.2	7.2	7.2	13.1 13.3	13.2		<0.001 0.001	0.001		14.2 13.9	14.1		0.17 0.17	0.17		2.9 3.6	3.3	
							s	0.24	84 84	22.2 22.2	22.2		33.1 33.1	33.1	8.1 8.1	8.1	99.6 99.5	99.6	7.2 7.2	7.2	7.2	5.2 4.4	4.8		<0.001	<0.001		5.3 5.1	5.2		0.09	0.10		1.3	1.2	
		IM6	Cloudy	Moderate	15:58	17.0	М		212	22.2 22.2	22.2	22.2	33.1 33.1	33.1	8.1 8.1	8.1	99.7 99.3	99.5	7.2 7.1	7.2		6.6	6.8	6.6	<0.001	<0.001	0.002	7.2	7.2 7.7	7.7	0.09	0.09	0.09	<1.0 <1.0	<1.0	1.1
							В	0.19 0.19	298 298	22.2 22.2	22.2		33.1 33.1	33.1	8.1 8.1	8.1	101.2 100.3	100.8	7.3 7.2	7.2	7.2	8.3 8.1	8.2		<0.001 0.004	0.003		10.7	10.8		0.09	0.09		<1.0 <1.0	<1.0	
							s	0.22 0.22	191 291	22.0 22.0	22.0		32.9 32.9	32.9	8.0 8.0	8.0	98.9 98.8	98.9	7.1 7.1	7.1	7.1	5.5 5.3	5.4		<0.001	<0.001		6.1 6.4	6.3		0.09	0.09		<1.0 <1.0	<1.0	
		F3	Cloudy	Rough	11:02	18	М	0.24 0.19	317 267	22.0 22.0 22.0 22.0 22.0 22.0	22.0	32.9 32.9	32.9	8.0	8.0	98.2 98.3	98.3	7.1 7.1	7.1		7.4 6.3	6.9	8.7	<0.001 0.001	0.001	0.001	5.0 5.4		8.3	0.09	0.09	0.09	<1.0 <1.0	<1.0	<1.0	
Mi							В	0.32	297 317			32.9 32.9	32.9	8.0 8.0	8.0	98.0 97.7	97.9	7.1 7.1	7.1	7.1	13.6 13.8	13.7		<0.001	<0.001		8.8 18.0	13.4		0.09	0.09		<1.0 <1.0	<1.0		
Flo	od						s	0.24	26 295	21.9 21.9 21.9 21.9 21.9 21.9		32.9 32.9	32.9	7.9 7.9	7.9	97.5 97.4	97.5	7.1 7.1	7.1	7.0	5.5 5.5	5.5		<0.001	<0.001		6.5 6.2	6.4		0.10 0.10	0.10		<1.0 <1.0	<1.0		
		IM6	Cloudy	Rough	10:40	16	М	0.16 0.07	271 200		21.9	32.9 32.9	32.9	7.9 7.9	7.9	97.0 97.0	97.0	7.0 7.0	7.0		5.6 5.6	5.6	6.4	<0.001 0.001	0.001	0.001	7.0 6.8	6.9	7.5	0.10 0.11	0.11	0.10	<1.0 <1.0	<1.0	<1.0	
							В	0.28	163 334	21.9 21.9	21.9		32.9 32.9	32.9	7.9 7.9	7.9	96.6 96.4	96.5	7.0 7.0	7.0	7.0	7.3 8.6	8.0		<0.001	0.001		10.8 7.8	9.3		0.10	0.10		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

Date: 2023/12/28

Tio	Monitorin	ng Weather	Sea	Sampling	Water Depth	Depth	Current	Current	Te	emperature (°	'C)	Salinity	(ppt)	pl	Н	DO Satu	ration (%)	Dissol	ved Oxygen	mg/L)	Т	urbidity(NTU)	Total Res	idual Chlorin	ne (mg/L)	Susper	ded Solids ((mg/L)	Total Inorganic Nitrogen (mg/L)			5-day Biocher	nical Oxygen De	mand (mg/L)
110	Station	Condition	Condition**	Time	(m)	Level ***	Velocity (m/s)	Direction	Value	Average	DA	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
						S	0.09 0.10	160 256	19.4 19.5		33.4 33.4	33.4	8.2 8.2	8.2	99.9 100.3	100.1	7.6 7.6	7.6	7.5	4.0 3.8	3.9		<0.001 <0.001	<0.001		4.8 4.4	4.6		0.06	0.06		<1.0 <1.0	<1.0		
	E2	Fine	Moderate	12:23	9.1	М	0.16 0.25	8 51	19.2 19.2		19.3	33.4 33.4	33.4	8.2 8.2	8.2	98.8 98.9	98.9	7.5 7.5	7.5	7.0	4.8	4.9	4.8	<0.001 <0.001	<0.001	<0.001	5.7 6.2	6.0	5.9	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
Mid-l	h					В	0.15 0.16	30 5	19.2 19.2	19.2		33.4 33.4	33.4	8.1 8.1	8.1	99.3 98.9	99.1	7.5 7.5	7.5	7.5	5.4 5.8	5.6		<0.001 <0.001	<0.001		7.3 7.1	7.2		0.07	0.07		<1.0 <1.0	<1.0	
						s	0.17 0.17	100 100	19.7 19.7 19.5 19.5 19.5	19.7		33.4 33.4	33.4	8.1 8.1	8.1	99.6 100.3	100.0	7.5 7.5	7.5	7.5	3.4	3.6		<0.001 <0.001	<0.001		3.8	3.5		0.05	0.05		<1.0 <1.0	<1.0	
	IM6	Fine	Moderate	11:53	17.0	М	0.18 0.18	37 37		19.5	19.5	33.4 33.4	33.4	8.1 8.1	8.1	98.6 98.6	98.6	7.4 7.4	7.4		3.7	3.8	3.9	<0.001	<0.001	<0.001	4.4	4.3 4.	4.3	0.05 0.05	0.05	0.05	<1.0 <1.0	<1.0	<1.0
						В	B 0.12 0.15	161 333	19.4 19.4	19.4		33.4 33.4	33.4	8.1 8.1	8.1	97.5 97.5	97.5	7.4 7.4	7.4	7.4	4.4	4.3		<0.001	<0.001		5.2 5.2	5.2		0.06	0.06		<1.0 <1.0	<1.0	
						S	0.41 0.41	309 309	19.4	10.4		33.5 33.5	33.5	8.2 8.2	8.2	98.8 99.1	99.0	7.5 7.5	7.5	7.4	3.7 3.5	3.6		<0.001 <0.001	<0.001		4.4	4.5		0.06	0.06		<1.0 <1.0	<1.0	
	F3	Cloudy	Rough	7:54	17.6	М	0.57	259 260			19.4	33.5 33.5	33.5	8.2 8.2	8.2	98.0 98.6	98.3	7.4	7.4		4.5 3.9	4.2	4.8	<0.001 <0.001	<0.001	<0.001	3.6	3.5	6.2	0.06	0.06	0.06	<1.0 <1.0	<1.0	<1.0
Mi						В	0.22	323 323	19.4 19.4		33.5 33.5	33.5	8.2 8.2	8.2	98.5 98.0	98.3	7.4 7.4	7.4	7.4	7.0 6.4	6.7		<0.001 <0.001	<0.001		11.2 10.1	10.7		0.06	0.06		<1.0 <1.0	<1.0		
Flo						s	0.12 0.23	290 303	19.5 19.5	19.5		33.5 33.5	33.5	8.1 8.1	8.1	97.8 98.0	97.9	7.4 7.4	7.4	7.4	7.4 7.4	7.4		<0.001 <0.001	<0.001		9.1 6.9	8.0		0.08	0.08		1.4	1.3	
	IM6	Cloudy	Rough	7:36	16.3	М	0.2 0.23	192 109	19.6 19.6	19.6	19.6	33.5 33.5		8.1 8.1	8.1	97.6 97.7	97.7	7.3 7.4	7.4		8.1 8.9	8.5	8.1	<0.001 0.002	0.002	0.001	11.9 11.9	11.9	9.8	0.05	0.06	0.07	<1.0 <1.0	<1.0	1.1
						В	0.18 0.42	283 248	19.6 19.6	19.6		33.5 33.5	33.5	8.1 8.1	8.1	98.9 98.0	98.5	7.4	7.4	7.4	9.0 7.7	8.4		<0.001 <0.001	<0.001		9.3	9.5		0.06	0.06		<1.0 <1.0	<1.0	

Remark: * DA: Depth-Averaged

** Calm: Small or no wave, Moderate: Between calm and rough; Rough: White capped or rougher

*** S: 1 m below the sea surface; M: mid-depth; B: 1 m above the seabed

ANNEX D

GRAPHICAL PRESENTATION OF OPERATION PHASE WATER QUALITY MONITORING RESULTS

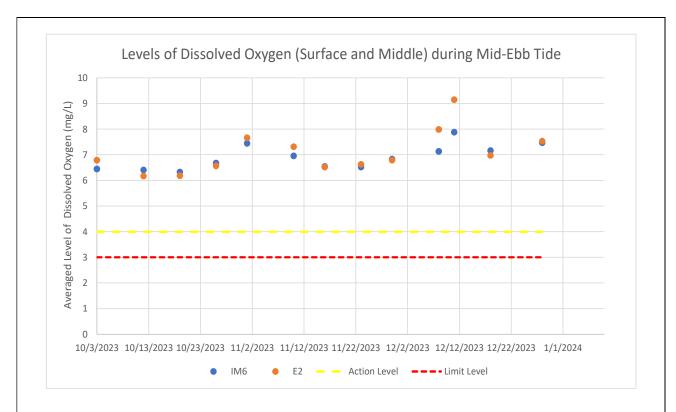


Figure 1: Levels of Dissolved Oxygen (Surface and Middle) during mid-ebb tide between October and December 2023

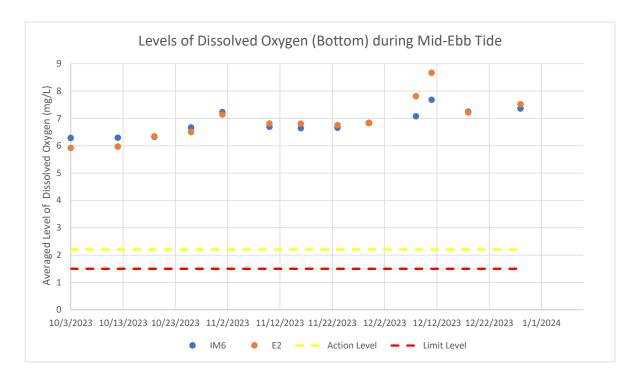


Figure 2: Levels of Dissolved Oxygen (Bottom) during mid-ebb tide between October and December 2023

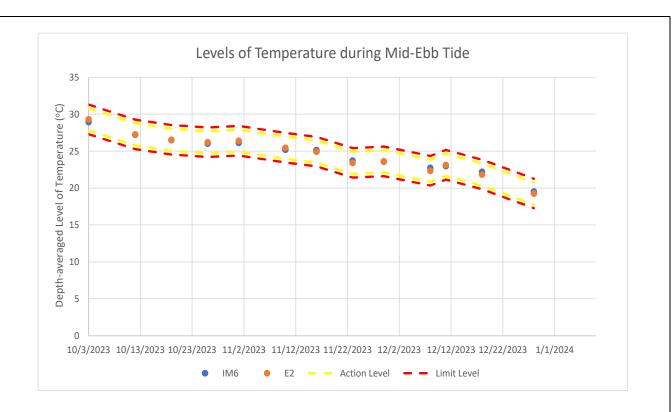


Figure 3: Levels of Temperature during mid-ebb tide between October and December 2023

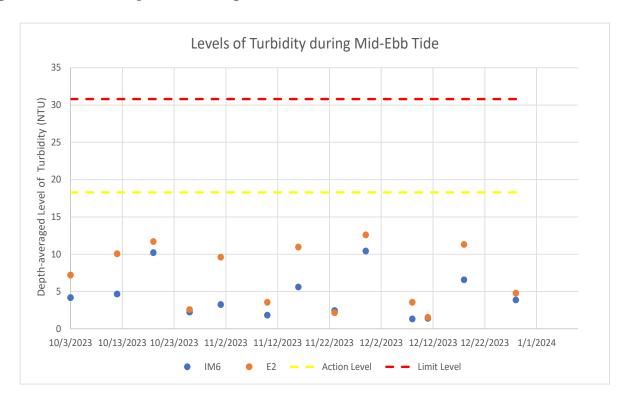


Figure 4: Levels of Turbidity during mid-ebb tide between October and December 2023

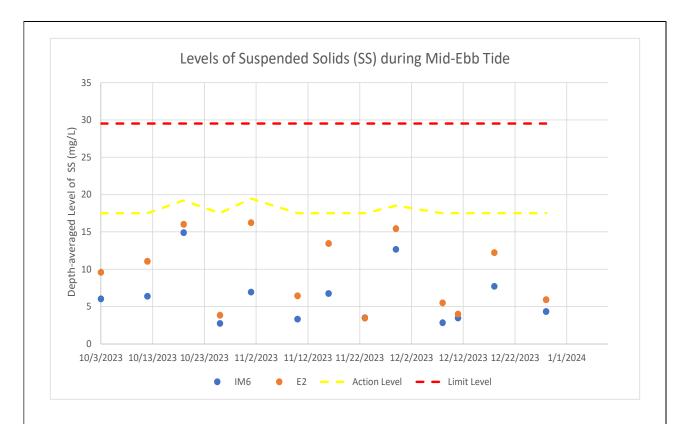


Figure 5: Levels of Suspended Solids during mid-ebb tide between October and December 2023

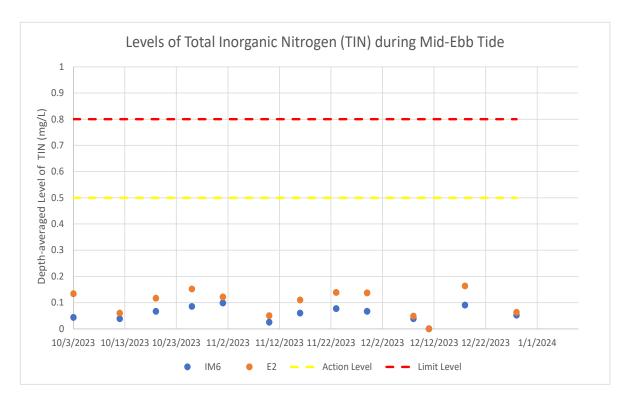


Figure 6: Levels of Total Inorganic Nitrogen during mid-ebb tide between October and December 2023

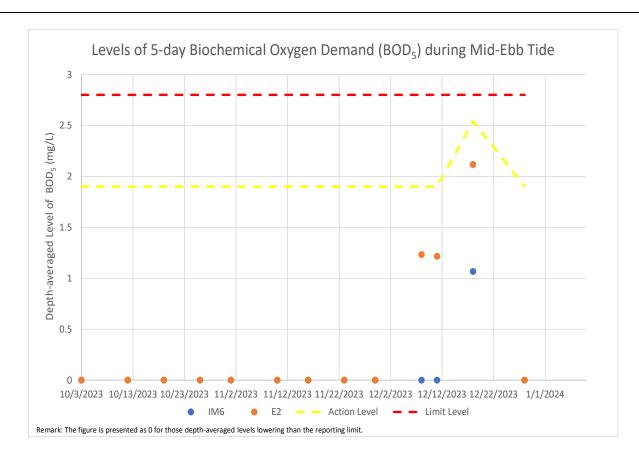


Figure 7: Levels of 5-day Biochemical Oxygen Demand during mid-ebb tide between October and December 2023

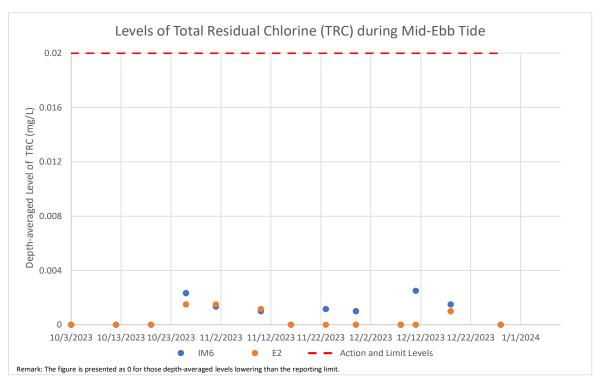


Figure 8: Levels of Total Residual Chlorine during mid-ebb tide between October and December 2023

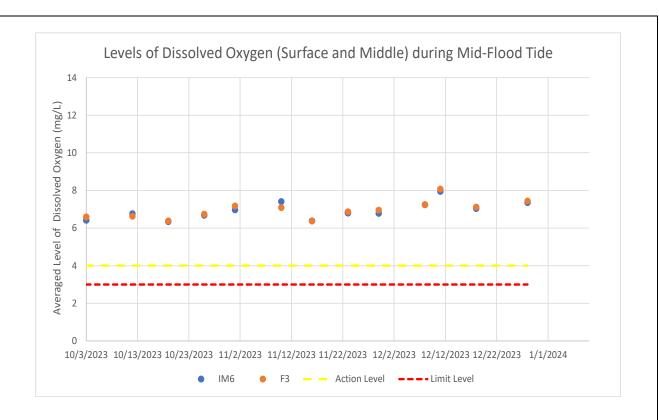


Figure 9: Levels of Dissolved Oxygen (Surface and Middle) during mid-flood tide between October and December 2023

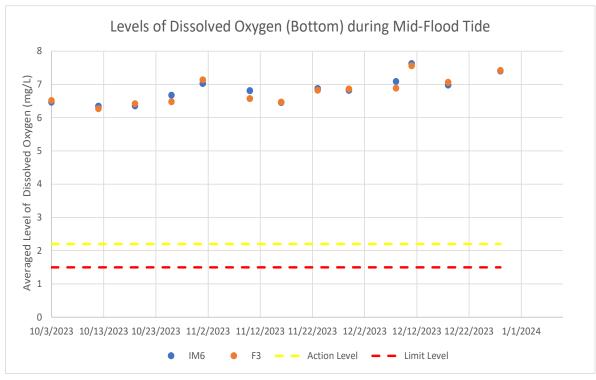


Figure 10: Levels of Dissolved Oxygen (Bottom) during mid-flood tide between October and December 2023

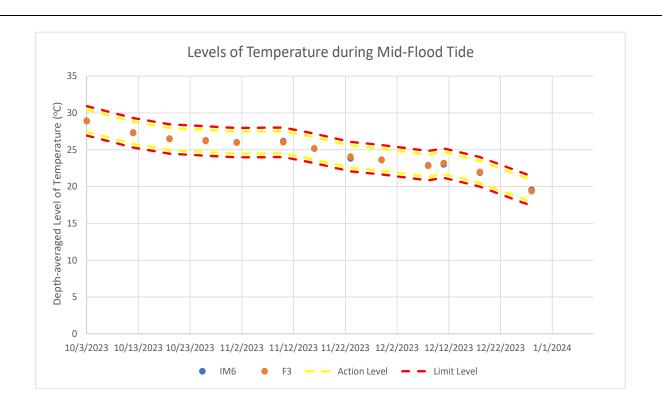


Figure 11: Levels of Temperature during mid-flood tide between October and December 2023

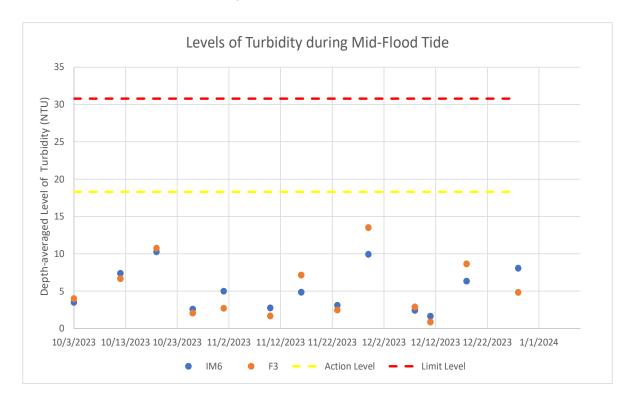


Figure 12: Levels of Turbidity during mid-flood tide between October and December 2023

Limited FSRU Pre-con EM&A.RC\07 Data\15 Operation WQ

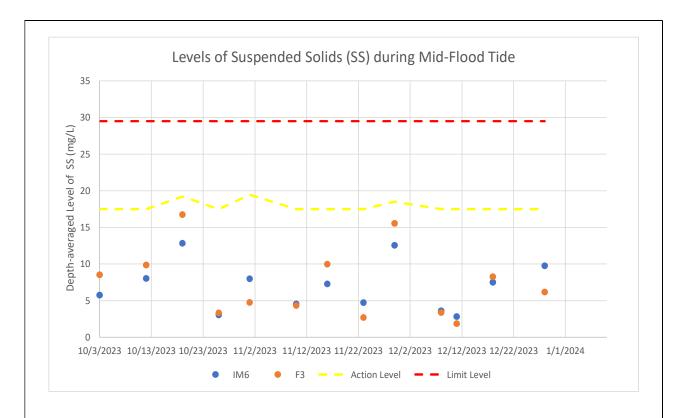


Figure 13: Levels of Suspended Solids during mid-flood tide between October and December 2023

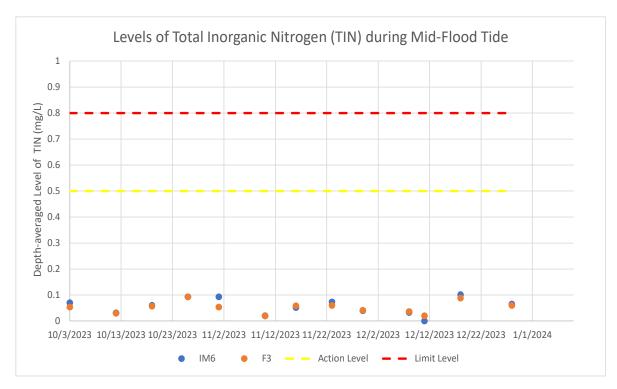


Figure 14: Levels of Total Inorganic Nitrogen during mid-flood tide between October and December 2023

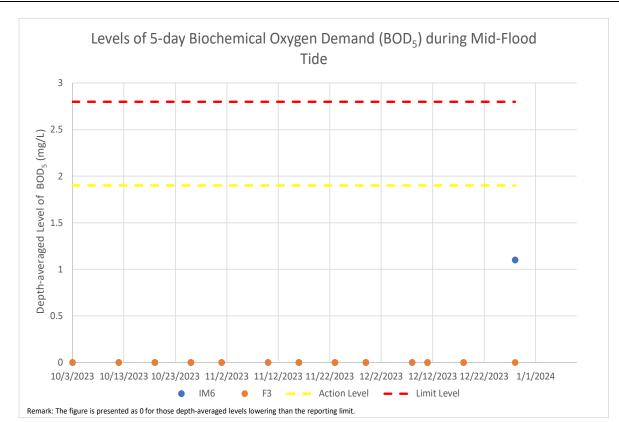


Figure 15: Levels of 5-day Biochemical Oxygen Demand during mid-flood tide between October and December 2023

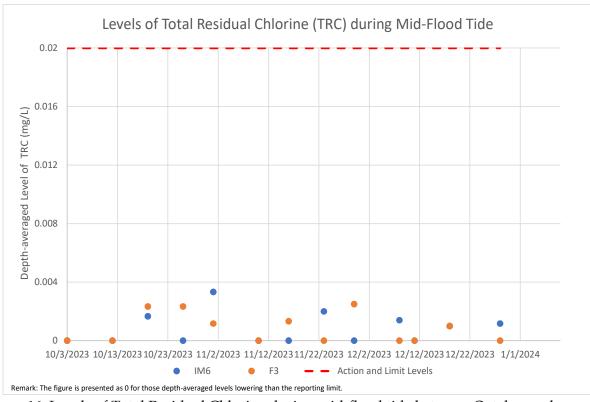


Figure 16: Levels of Total Residual Chlorine during mid-flood tide between October and December 2023

ERM HAS OVER 160 OFFICES ACROSS THE FOLLOWING COUNTRIES AND TERRITORIES WORLDWIDE

Argentina The Netherlands

Australia New Zealand

Belgium Peru

Brazil Poland

Canada Portugal

China Puerto Rico

Colombia Romania

France Senegal

Germany Singapore

Ghana South Africa

Guyana South Korea

Hong Kong Spain

India Switzerland

Indonesia Taiwan

Ireland Tanzania

Italy Thailand

Japan UAE

Kazakhstan UK

Kenya US

Malaysia Vietnam

Mexico

Mozambique

ERM's Hong Kong Office

2509, 25/F One Harbourfront

18 Tak Fung Street Hunghom, Kowloon

Hong Kong

T: (852) 2271 3000

F: (852) 3015 8052

www.erm.com